SEMESTER 7

CIVIL ENGINEERING

STRUCTURAL DYNAMICS

Course Code	PECET741	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET403	Course Type	Theory

Course Objectives:

1. To provide the basic concepts of structural dynamics and the theoretical background to perform dynamic analysis of structures.

Module	Syllabus Description	
No.		
	Introduction - Classification of dynamic loads - essential characteristics of	
	a dynamic problem - methods of discretization- single degree of freedom	
	systems – basic components of a dynamic system.	
1	Formulation of equation of motion – Newton's 2nd law and D' Alembert's	
	principle; influence of gravitational forces – generalized SDOF systems.	9
	Solution of the equation of motion – undamped free vibration – damped	
	free vibration- critically damped under damped and over damped SDOF	
	systems, Logarithmic decrement.	
	Response to harmonic loading – steady state and transient states steady sate	
	amplitude, Dynamic magnification factor, force transmissibility and	
	vibration isolation.	
2	Response to periodic loading - Fourier series representation of periodic	0
	loads in time domain. Response of SDOF systems.	9
	Response to impulse loading – half-sine, rectangular and triangular	
	pulses;	

3	 Response to general loading – Duhamel Integral, damped and undamped systems. Multi degree of freedom systems – Lumped mass systems, shear building frame, Equation of motion. Free vibration analysis: Natural frequencies and mode shapes, orthogonality of normal modes. 	9
4	 Approximate methods: Rayleigh's method Dunkarley's method, Stodola's method. Distributed mass (continuous) systems – differential equation of motion – Axial vibration of rods. Flexural vibration of beams, natural frequencies and mode shapes of simply supported beam. Evaluation of frequencies and mode shapes of cantilever beam and fixed beam (formulation only). 	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

		Bloom's
	Course Outcome	Knowledge
		Level (KL)
	Formulate appropriate SDOF models of simple structural systems	K3
CO1	under dynamic loads apply them to the solution of engineering	
	problems.	
CO2	Analyze and interpret the dynamic response of SDOF systems for	K3
	various dynamic inputs.	
CO3	Develop mathematical models for MDOF shear building models and	K3
	estimate the natural frequencies and vibration modes for the same.	
CO4	Understand the dynamic behaviour of continuous parameter systems.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3										2
CO5	3	3										2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Dynamics of Structures	Anil K. Chopra	Pearson Education	2020			
2	Structural Dynamics: Theory and Computation	Mario Paz	Springer	5 th Ed 2007			
3	Structural Dynamics: Vibrations & Systems	Mukhopadhyay M.,	ANE Books	2008			

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Dynamics of Structures	Clough R.W,	CBS	2 nd Ed			
		J.Penzien		2015			
2	Vibration of Structures	J.W. Smith	Chapman and Hall,	1000			
			London.	1700			
	Vibration Analysis and	Alphose Zingoni	CRC Press				
3	Structural Dynamics for Civil			2019			
	Engineers: Essentials and			2018			
	Group-Theoretic Formulations						

Video Links (NPTEL, SWAYAM)			
SI No.	Link ID		
1	https://archive.nptel.ac.in/courses/105/106/105106151/		
2	https://archive.nptel.ac.in/courses/105/101/105101006/		
3	https://archive.nptel.ac.in/courses/105/101/105101209/		

FORMWORK ENGINEERING

Course Code	PECET742	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

- 1. Understand the principles of formwork design and construction.
- 2. Learn about different formwork materials and systems.
- **3.** Apply safety standards in formwork operations.
- 4. Develop skills in planning and managing formwork operations

Module	Syllabus Description	
No.		
1	Introduction to Formwork and Materials Introduction to Formwork Engineering, Definition and importance of formwork, Historical development of formwork systems, Formwork Materials : Timber, steel, aluminum, and plastic formwork, Properties and selection criteria, Advantages and disadvantages of different materials, Modern Formwork Systems, Modular, prefabricated, and reusable formwork, Advancements in formwork materials and technology, Environmental Considerations, Sustainable formwork practices, Reducing waste and recycling materials, Environmental impact assessment.	9
2	Design and Construction of Formwork Systems Basic Principles of Formwork Design, Load considerations and calculations Structural analysis of formwork systems, Formwork for Different Concrete Structures, Foundations, walls, columns, beams, and slabs,	9

3	 Special considerations for high-rise buildings and bridges, Formwork for architectural concrete, Assembling and Dismantling Formwork, Erection and alignment, Shoring and reshoring practices. Safety and Quality Control in Formwork Formwork Safety, Safety regulations and standards, Common hazards and risk management, Inspection and maintenance of formwork systems, Formwork Quality Control, Ensuring accuracy and quality in construction, Testing and inspection methods, Quality assurance protocols, Case Studies and Practical Applications, Analysis of real-world formwork projects Lessons learned from successful and failed systems, Guest lectures from industry professionals 	9
4	Project Planning, Management, and Special Conditions Project Planning and Management, Estimating formwork costs and labor, Scheduling and sequencing operations, Project management tools and techniques, Formwork in Special Conditions, Extreme weather conditions, Underwater formwork, Unusual shapes and complex geometries, Formwork for Repair and Rehabilitation, Techniques for concrete repair works, Strengthening and retrofitting existing structures, Case studies of rehabilitation projects	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Identify appropriate materials for the form work construction	K3			
CO2	Apply the principles of structural analysis and design in formwork design	К3			
CO3	Demonstrate the safety and quality control requirements in formwork	K2			
CO4	Organize from work construction considering the planning concepts	K3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2				3					
CO2	3	3	3									
CO3	3											3
CO4	3	3	3								3	

Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Formwork for Concrete	M.K. Hurd	American concrete inst	1979				
2	Concrete Formwork Systems	Awad S. Hanna	CRC Press	2019				
3	Formwork for Concrete Structures	Garold D. Oberlender and Robert L. Peurifoy	McGraw Hill	4 th edition 2010				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Formwork A Practical Guide	Geoffrey Lee, Peter McAdam	CRC Press	2014				

Video Links (NPTEL, SWAYAM)					
SI No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/104/105104030/				

ENVIRONMENTAL GEOTECHNOLOGY

Course Code	PECET743	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET402	Course Type	Theory

Course Objectives:

- 1. The provide information regarding soil -water- contaminant interaction process
- 2. To provide aspects of waste containment facilities design and remediation of contaminated sites

Module	Syllabus Description	Contact	
No.	Synabus Description		
1	Scope of geoenvironmental engineering - multiphase behaviour of soil – importance of soil physics, soil chemistry, hydrogeology, biological process- Geochemical Attenuation-Quantification of attenuation capacities-Laboratory evaluation, sequential batch-contact testing and Column percolation testing. Soil-water-contaminant interaction and concepts of double layer –Change in properties of soil due to change in environment;- Atterberg limits, shear	9	
	strength, volume change, and permeability.		
2	Contaminant transport in soil -Transport process- Advection, Diffusion, Dispersion and sorption-Fick's equation Characteristics of Municipal solid waste, Physical, Chemical and geotechnical characteristics-Identification of Hazardous and Non-Hazardous waste waste dump and its impact on environment-Regulatory requirement -Solid waste management rules (brief introduction only) –MOEF&CC Guidelines-duties of waste generator and local authority -Evolution of waste containment facilities and disposal practices – Site selection based on environmental impact assessment	9	

3	Landfill Types-Landfill layout and capacity, Planning of landfills-Liner and Cover system, its components and its functions-natural clay liner- compacted clay liner selection of soil for barrier layer- Methods to find permeability of clay barrier layer -Primary and secondary leachate collection and removal systems - Gas Management, Gas extraction systems-passive and active system Closure and post closure monitoring system (brief introduction)	9
4	Application of geosynthetics in landfills-Geotextile, geomembrane, geosynthetic clay liners, Geocomposites. methodology of construction, testing and design aspects Contaminated site- Soil exploration at contaminated site (brief introduction)-risk assessment of contaminated site - remediation methods for soil and groundwater -selection and planning of remediation methods-in-situ/exitu remediation, bioremediation, thermal remediation, pump and treat method, phyto remediation and electrokinetic remediation Stability of landfill (brief introduction)	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	A agimm on ti	Internal	Internal	
Attendance	Assignment/ Microproject	Examination-1	Examination- 2	Total
		(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand Soil -water- contaminant interaction process and	K1
CO2	Study Contaminant transport in soil	K2
CO3	Design aspects of waste containment facilities	K3
CO4	Plan Remediation of contaminated sites	K1

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					1	1					
CO2	3	2					2					
CO3	3		2				2					
CO4	3			2		1	1					

Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Soil engineering in relation to environment	Ayyar TSR	LBS centre for Science and Technology, Trivandrum	2000	
2	Solid waste Management and Engineered Landfills	Dr. G V Rao and Dr. R S Sasidhar	Saimaster Geoenvironmental Services Pvt. Ltd. Publication	2009	
3	Geotechnical Practice for Waste Disposal.	Daniel, D.E.).	Chapman, and Hall, London.	1993	
4	Geoenvironmental Engineering	Hari D. Sharma, Krishna R. Reddy	Publisher: John Wiley & Sons Inc.	2004	
5	Designing with Geosynthetics.	Koerner, R.M.	Fifth Edition. Prentice Hall, New Jersey	2005.	

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Geoenvironmental Engineering: Principles and Applications,	Reddi L.N and Inyang HI	Marcel Dekker Inc Publication	2000	
2	Waste Disposal in Engineering landfills,	Manoj Datta	Narosa Publishing House, NewDelhi	1997	
3	Geoenvironmental Engineering: Contaminated Soils, Pollutant Fate, Mitigation	R. N. Yong	Lewis Publication.	2000	

	Video Links (NPTEL, SWAYAM)				
Sl No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/101/105101196/				

AIRPORT PLANNING AND DESIGN

Course Code	PECET744	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:3:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET502	Course Type	Theory

Course Objectives:

- 1. To impart knowledge about planning different components of airport.
- 2. To enable the students to understand the factors affecting the design of airports.

Module	Sullahus Description	
No.	Synabus Description	Hours
1	General - History, development, policy of air transport, aircrafts, aerodromes, air transport authorities, air transport activities, air craft characteristics, airport classifications as per ICAO. Regional planning - concepts and advantages, location and planning of airport as per ICAO and F.A.A. recommendations, airport Elements -airfield, terminal area, obstructions, approach zone, zoning laws, airport capacity, size and site selection, estimation of future air traffic, development of new airport,	9
	requirements of an ideal airport layout. Runway design- Wind rose and orientation of runway, wind coverage and	
2	crosswind component, factors affecting runway length, basic runway length, and corrections to runway length, runway configurations. threshold limits cross section of runway. Taxiway design - Controlling factors, layout, exit taxiway, location and geometrics, holding apron, turn around facility. Aprons -locations, size, gate positions, aircraft parking configurations and parking systems, hanger-site selection, planning and design considerations, Fuel storage area, blast pads. wind direction indicator.	9
3	Landside Planning: Terminal area elements and requirements, Termina concepts & types, Passenger requirements at terminal building, space requirements-design peak hour demand, standards, location planning	9

	concepts of other landside elements. Airport Geometrics: Runway and	
	taxiway geometric elements: Length, width, Safety Area, Grade & grade	
	changes, Sight distance, Turning radius. Grading and Drainage: Airport	
	grading-importance - operations, airport drainage aims, functions, special	
	characteristics, basic requirements, surface and subsurface drainage systems.	
	Visual Aids: Objectives, Runway Marking, Taxiway Marking, Shoulder	
	marking, Apron marking. Airport Lighting: Beacon, Obstruction lighting,	
	Approach lighting, Runway lighting. Taxiway Lighting, Airfield Signage	
	system: Runway and taxiway signages, Signing standards. Air traffic	0
4	control: Air traffic control-objectives, rules, control system, control	9
	network-visual aids-landing information system.	
	Air Travel demand forecast: Macro & Micro Analysis (Intro only), Air field	
	capacity: factors, (Intro only).	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the different components of airport and aircrafts.	K1
CO2	Apply principles of airport planning in design of Runways and Taxiways.	К3
CO3	Apply the principles in planning the landside features of an airport.	K2
CO4	Apply the standards for geometric design of runways and taxiways.	K3
CO5	Describe the various visual aids applied on airports.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3							1				2
CO2	3	2				2		1				2
CO3	3	2				2		1				2
CO4	3	3	3			2		1				2
CO5	3	2				2		1				2

Text Books								
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year				
1	Airport Planning and Design	Khanna S K, Arora M G and Jain S S	Nemchand and Brothers	6 th Edition, 2012				
2	Airport Engineering	Rangwala S., C., and Dalal K., B	Charotar Publishing House Pvt. Ltd.	16 th Edition, 2016				
3	Planning and Design of Airports	Horonjeff , R. , McKelvey, F. X., Sproule, W. J., and Young S. B.	McGraw-Hill Professional	5 th Edition, 2010				

Reference Books								
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year				
1	Airport Systems: Planning, Design, and Management	Richard de Neufville	McGraw-Hill Professional	2 nd Edition, 2013				
2	Transportation Engineering: Railways, Airports, Docks & Harbours	Srinivasa Kumar R	Universities Press	2014				
3	Planning, Design and Development of 21st Century Airports	Norman J. Ashford, Saleh Mumayiz and Paul H. Wright	John Wiley &Sons	4 th Edition, 2011				
4	Airport planning and management	Young, S.B. and Wells., A.T.	McGraw-Hill Education	6th ed., 2011				

Video Links (NPTEL, SWAYAM)					
SI No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/107/105107123/				

HIGHWAY MATERIALS AND DESIGN

Course Code	PECET746	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:3:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET502	Course Type	Theory

Course Objectives:

- 1. Understand the characteristics of various highway materials, tests on highway materials, and design of bituminous mixes,
- **2.** Analyse the stresses on pavements and to design major types of pavements using different approaches so that it has better performance and longer service life

Module No.	Syllabus Description					
1	Pavements and materials: Desirable properties and testing of materials: Introduction to highway pavements-Flexible and rigid pavements-component parts - Functions and significance of layers. Pavement Materials – Desirable properties, principle and procedure of tests for assessment of subgrade soil, road aggregates and bitumen.	9				
2	Bituminous mixes requirements and design: Materials for durable pavements- Artificial aggregates, types of binders, -emulsions, cut backs and modified binders-grading, characteristics and uses. Aging of bitumen and aging tests. Requirements of bituminous mixes, Specifications for bituminous pavement layers. Grading of aggregates, design of bituminous mixes using Marshall Method.	9				
3	Design of flexible pavements: Introduction to analysis and design of flexible pavements: Factors affecting design and performance of pavements, ESWL of multiple wheels, Repeated loads and EWL factors, stresses and	9				

	deflections in homogeneous masses and layered system. Design of flexible pavements: Empirical, semi - empirical and theoretical approaches for flexible pavement design- Design of pavement using CBR method, Triaxial method, Burmister's two-layer theory and IRC method.	
4	Design of rigid pavements: Introduction to analysis and design of rigid pavements: Types of stresses -wheel load stress, warping stress, frictional stress and critical combination of stresses, Westergaard's Analysis. Joints in cement concrete pavements: Types of joints and functions, Joint spacings, design of tie bar and dowel bar using IRC method. Design of slab thickness- IRC methods of design of cement concrete slab.	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment	Internal	Internal		
Attendance	Assignment/ Mieroproject	Examination-1	Examination- 2	Total	
	Microproject	(Written)	(Written)		
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify suitable materials for different types of pavements and Interpret material test results with respect to field conditions and standards.	К3
CO2	Apply the pavement material properties to analysis of pavements and Evaluate material properties in design of pavement mixes.	К3
СО3	Determine the stresses and design flexible pavements with better performance and longer service life	К3
CO4	Determine the stresses and design rigid pavements with better performance and longer service life and Design the reinforcements in cement concrete pavements	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3		3	3	3		3		2
CO2	3	3	3	3		3	3	3		3		2
CO3	3	3	3	3		3	3	3	3	3		1
CO4	3	3	3	3		3	2	3				

Text Books								
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year				
1	Highway Engineering	SK Khanna , CEO Justo, A. Veeraragavan	Nem Chand & Bros	Revised 10th Edition - 2017				
2	Principles and Practices of	Kadiyali, L. R. and N.B	Khanna Publishers,	Seventh				
	Highway Engineering	Lal,	2013	edition, 2017				
3	Principles of Transportation and Highway Engineering	Rao G. V.	Tata McGrawHill	1996				
4	Drin sinlag of Devenuent Design	Yoder E J and Witezak	John Wiley and some	2nd Edition				
4	Principles of Pavement Design	M W	John whey and sons	2011				
5	IRC: 37-2018, Guidelines for the Design of Flexible Pavements							
6	IRC: 58 - 2015, Guidelines for th	he Design of Rigid Pavemen	its					
7	MoRTH specifications							

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Pavement Analysis and Design	Yang H. Huang	Prentice Hall	2004	
2	Pavement Engineering – Principles and Practice	Rajib B. Mallick and Tahar El-Korchi	CRC Press (Taylor and Francis Group)		

Video Links (NPTEL, SWAYAM)				
SL. No.	Link ID			
1	https://nptel.ac.in/courses/105106221			
2	https://nptel.ac.in/courses/105104098			

RIVER ENGINEERING

Course Code	PECET747	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET501	Course Type	Theory

Course Objectives:

- **1.** To understand river morphology, classification systems, channel behaviour, and sediment transport processes.
- 2. To understand the critical aspects in the design of river engineering structures
- 3. To understand river mechanics to facilitate mathematical/ hydraulic modelling.

Module	dule Syllabus Description	
No.		
	Introduction – river morphology- classification of rivers - systems of stream	
	classification. Behaviour of rivers, channel geometry, effects of long contraction.	
1	Super critical flow, Stream profiles and bed material bank erosion,	9
	River basin management plans, inter basin river water transfers and river water disputes	
	River training works - classification of river training works-objectives -	
	methods _ planning _ design parameters_embankment as river training	
2	works- design of guide banks- artificial cut off– pitched island – river diversions - examples of river training works.	9
	Properties of the sediment settling velocity, - incipient motion critical	
	tractive force, empirical equations- scour criteria, Shield's analysis -White's	
3	analysis Regimes of flow and resistance; Bed form mechanics design of	9
	stable channels – Garret's method Bed load transport and its estimation.	

	Suspended load transport, Diffusion in turbulent flow, differential equation	
4	for suspension of sediment, estimation of suspended load, Sediment samplers	9
	– bed load samplers – suspended load samplers.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment	Internal	Internal		
Attendance	Assignment/ Microproject	Examination-1	Examination- 2	Total	
	wheroproject	(Written)	(Written)		
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each of which 1 question should be answered.		()
• Each question can have a maximum of 3 sub		00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	To understand river morphology, classification, channel behaviour, and sediment transport processes.	K2
CO2	To understand the critical aspects in the design of river engineering structures	К3
CO3	To understand river mechanics to facilitate mathematical/ hydraulic modelling.	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1									
CO2	3	3	2									
CO3	3	3	3									

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Mechanics of Sediment Transportation and Alluvial Stream Problems	R. J. Garde, K. G. Ranga Raju	New Age International	3 rd Ed, 2000
2	Flow in Open Channels	Subramanya K	Tata McGraw Hill	4, 2015
3	Hydraulics of Sediment Transport	Walter Hans Graf	Water Resources Pubns	1987
4	River Engineering	Margaret S. Peterson,	Prentice Hall	1986

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Fluvial Processes in River Engineering	Howard Chang	John Wiley & Sons	1988		
2	An introduction to fluvial hydraulics	Serge Leliavsky	Dover Publications	1966		

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/103/105103204/				

PAVEMENT DESIGN AND CONSTRUCTION

Course Code	PECET745	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET502 and PCCEL607	Course Type	Theory

Course Objectives:

- **1.** This course introduces students to the fundamental concepts of Pavements, materials used for pavement construction, and types.
- **2.** Students will learn to analyse and design a pavement and also to evaluate the condition of a pavement.

Module	Syllabus Description	
No.		
1	 Pavement: Functions and characteristics- types of pavement: flexible pavement, rigid pavement, comparison - Different layers of flexible and rigid pavement, functions and characteristics of layers. Pavement materials: Properties of aggregates, bitumen and subgrade soil. Requirements and tests on aggregates, bitumen and subgrade soil (CBR value). Types of bitumen and uses, bituminous emulsion and cutback. Methods of grading of bitumen 	9
2	Bituminous pavement types: Penetration layer system and premixed system- Types and specification of materials used. Special types of bituminous layers (stone mastic asphalt and mastic asphalt). Mix design: physical and volumetric properties of bituminous mix, Marshall	9
	method of mix design, Super pave mix design.	

	Construction of Flexible Pavement- Construction steps, equipment used	
	and quality control checks of subgrade, granular sub base (GSB),WBM,	
	WMM, Bituminous Macadam and Bituminous Concrete layers of flexible	
3	pavement.	9
	Construction of Cement concrete pavement: material characterization,	
	preparation of subgrade and base, presetting reinforcement in joints and	
	PCC slab construction. Methods of construction of concrete pavements.	
	Introduction to Pavement Evaluation- Structural and functional	
	requirements of pavements. Functional evaluation of pavements- pavement	
4	condition survey, pavement distress rating indices,	9
	Structural evaluation of flexible pavements by Benkelman Beam Deflection	
	technique.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Assignment

Find a real-world pavement requirement. Collect and analyse required data and design the pavement.

- *1.* Defining objectives (K4 4 points).
- 2. Laboratory experiments or field data collection (K4 4 points)
- 3. Analysis of data (K5 4 points)
- 4. Verification with standard specification or rating (K5 4 points)
- 5. Conclusions (K4- 2 points, K5 2 points)
 - a. Summarizes findings and insights. (K4)
 - b. Reflects critical thinking and informed decision-making. (K5

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each question	
• Total of 8 Questions,	can have a maximum of 3 sub divisions. Each	60
each carrying 3 marks	question carries 9 marks.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Understand the different types of pavements and the materials used.	К3
CO2	Design a typical bituminous pavement using standard methods.	K3
CO3	Apply on field the basic construction practises of flexible and rigid pavements.	К3
CO4	Understand the concept of pavement evalution as per standard procedures.	К3
CO5	Analyse & evaluate the design procedure, construction and conduct a structural & functional evaluation of a typical pavement.	K4, K5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2			2		3				3
CO2	3	3				2		3				3
CO3	3	3	3			2		3				3
CO4	3	3				2		3				3
CO5	3	3				2		3				3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Highway Engineering	Khanna, S.K, Justo E.G, .A Veeraragavan	Khanna Publishers	10th Edition, 2018			
2	Principles of Highway Engineering	Kadiyali, L. R	Khanna Publishers	2001			
3	Pavement Engineering	Rajib B. Mallick and TaharEl-Korchi	CRC press	2009			
4	Principles of Transportation and Highway Engineering	Rao G. V	Tata McGrawHill	1996			
5	Bituminous Road Construction in India	Prithvi Singh Khandhal	PHI Learning	2019			

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Pavement Management for Airports, Roads and Parking lots	Shahin M.Y	Chapman & Hall,	2005		
2	MoRTH 2001, Manual for cons	truction and supervision of	f Bituminous works			
3	IRC: 37-2018: Guidelines for the	Design of Flexible Pavement	nts			

Video Links (NPTEL, SWAYAM)				
Sl.No.	Link ID			
1	https://nptel.ac.in/courses/105104098			
2	https://www.civil.iitb.ac.in/~vmtom/nptel/401_lnTse/web/web.html			
3	https://archive.nptel.ac.in/courses/105/107/105107219/			
4	https://nptelvideos.com/video.php?id=2058			

GROUND WATER ENGINEERING

Course Code	PECET751	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET501, PCCET402	Course Type	Theory

Course Objectives:

1. To expose the students to the fundamental concepts of groundwater hydrology and its engineering applications.

Module	Syllabus Description	
No.	Synabus Description	Hours
	Vertical distribution of groundwater- Types of geologic formations, aquifer	
	and their types, Properties of aquifer related to storage and transmissivity of	
	water, Darcy's law (Review)	
1	Steady unidirectional flow- steady flow in a homogenous aquifer- aquifer	
	with recharge- flow into infiltration galleries. (Problems from unidirectional	9
	flow)	
	Evaluation of aquifer parameters by Theis, Jacob's and Chow's method.	
	(Problems from evaluation of aquifer parameters)	
	Modelling of ground water flow- governing equations of ground water flow	
	and boundary conditions (basic ideas only), solution of partial differential	
	equation of ground water flow for 1D steady ground water flow in	
2	homogenous aquifers (confined and unconfined) using finite difference	
	method (uniform mesh interval only)	9
	Partial differential equation governing unsteady groundwater flow-	
	unsteady radial flow towards well.	
	Well hydraulics -Well flow near aquifer boundaries- Image well system.	
2	Method of images- Practical cases	0
5	(Problems from method of images).	7
	Method of constructing shallow wells- Method of constructing shallow wells	

	-cable tool method, rotary method and reverse rotary method-well								
	completion-design of gravel packed well-well development-different								
	methods, well rehabilitation.								
	Surface investigation of groundwater- different methods-electrical resistivity								
	method, seismic refraction method- determination of aquifer thickness of								
	horizontal aquifers (Problems from resistivity method, seismic refraction)								
4	Groundwater Contamination, Quality of Ground Water- Graphical								
4	Representations. Reducing Groundwater Contamination.	9							
	Sea water intrusion- Ghyben-Herzberg equation, sea water-fresh water								
	interface, length of intrusion, upconing, preventive measures.(Problems								
	from sea water intrusion)								

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	A agimmont/	Internal	Internal	
Attendance	Assignment/ Microproject	Examination-1	Examination- 2	Total
		(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Determine the aquifer parameters using different methods.	К3
CO2	Perform numerical modelling of ground water system.	К3
CO3	Describe the procedure of well construction and estimate the well draw down curve.	К3
CO4	Determine aquifer thickness using different geophysical methods	K3
CO5	Estimate the extent of ground water pollution and assess the quality	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3					1	3	3			
CO2	3	3					1	3	3			
CO3	3	2					1	3	2			
CO4	3	3					1	3	3			
CO5	3	3					1	3	3			

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Ground Water Hydrology	D.K. Todd	Wiley International	1995				
2	Groundwater.	H.M. Raghunath	New Age International	2007				
3	Numerical Ground Water Hydrology	A.K. Rastogi	Penram International	2007				

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Ground Water Assessment, Development and Management	K. Karanth	Tata McGraw Hill	2017			
2	Ground Water Manual : A Water Resources Technical Publication	USDI, Bureau of Reclamation	Scientific Publishers - USDI	2017			
3	Ground Water and tube wells	S.P Garg	Oxford &IBH Publishing Company	1993			
4	Ground Water Hydrology	Herman Bouwer	MC Graw Hill Kogakusha Ltd	2000			

Video Links (NPTEL, SWAYAM)					
Sl No.	Link ID				
1	https://onlinecourses.nptel.ac.in/noc24_ce83/preview				
2	https://nptel.ac.in/courses/105103026				

SUSTAINABLE CONSTRUCTION PRACTICES

Course Code	PECET752	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To know the importance of sustainable use of natural resources and energy.
- 2. To understand the principles of effective energy and resources management in buildings.
- 3. To bring awareness of the basic criteria in the green building rating systems.

Module	Syllabus Description	
No.	Synabus Description	Hours
	Introduction to sustainable practices: Building life cycle, resource use	
	in the built environment, major environmental issues, three dimensions of	
	sustainability, environment, economy and social aspects, construction	
1	ecology and principles of green engineering.	0
	Indoor Environmental Quality: Day lighting, air ventilation, exhaust	9
	systems, low VOC paints, materials & adhesives, building acoustics. Codes	
	related to green buildings: NBC, ECBC, ASHRAE, UPC, etc.	
	Energy Efficiency: Environmental impact of building constructions,	
	Concepts of embodied energy, operational energy and life cycle energy.	
	Methods to reduce operational energy: Energy efficient building	
2	envelopes, Solar Heat Gain Coefficient, U-Values for facade materials,	
	efficient lighting technologies, energy efficient and BEE rated appliances for	9
	heating and air-conditioning systems in buildings, zero ozone depleting	
	potential (ODP) materials, wind and solar energy harvesting, energy	
	metering and monitoring, concept of NET ZERO buildings.	

	Water conservation and efficiency: Rainwater harvesting methods for	
	roof & non-roof, reducing landscape water demand by proper irrigation	
	systems, water efficient plumbing systems, water metering, waste water	
3	treatment, recycle and reuse systems.	9
	Waste Management: Handling of construction & demolition waste	
	materials, separation of household waste, handling e-waste, on-site and off-	
	site organic waste management	
	Introduction to Green Buildings: Definition of green buildings, definition	
	of sustainability, typical features of green buildings, benefits of green	
4	buildings towards sustainable development. Green building rating systems -	0
	GRIHA, IGBC and LEED, overview of the criteria as per these rating	9
	systems, Case studies.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40
End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the methodologies for sustainability and maintain indoor environmental quality	К3
CO2	Describe energy efficiency methods used in green building practices.	K3
СО3	Adopt various water efficiency criteria and waste management methods	К3
CO4	Understand the principles and practices of green buildings	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					3	3					3
CO2	3					3	3					3
CO3	3					3	3					3
CO4	3					3	3					3

Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Non-Conventional Energy Resource	G. D. Rai	Khanna Publishers	1988
2	Sustainable Construction and Design	Regina Leffers	Pearson / Prentice Hall, USA	2009
3	Sustainable Construction Practices	Er. Chirag K Baxi and Dr. Snehal Abhyankar	Nexus stories publication	2023

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Green Building Fundamentals: Practical Guide to Understanding and Applying Fundamental Sustainable Construction Practices and the Leed System	Mike Montoya	Pearson	2 nd Ed 2010			
2	Sustainable Practices in the Built Environment	Craig Langston	CRC Press	2008			
3	Sustainable Building Design Manual, Vol.1 and 2, TERI, 2004						
4	GRIHA version 2015, GRIHA rating system, Green Rating for Integrated Habitat Assessment						

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	http://acl.digimat.in/nptel/courses/video/105102195/105102195.html				

ADVANCED GEOTECHNICAL INVESTIGATION

Course Code	PECET753	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Geotechnical Engineering -1 (PCCET402)	Course Type	Theory

Course Objectives:

- 1. To impart in-depth knowledge about the various methods of geotechnicalinvestigation and the field tests to be conducted in different situations
- **2.** To give the students a clear idea about how a geotechnical investigation programme is to be planned and executed
- 3. To help the students to take proper engineering decisions in practical situations
- 4. To understand the functions and applications of geosynthetics

Module	Syllabus Description	
No.		
	Planning an Investigation Programme	
	Geotechnical Investigation - Necessity, Scope and Objectives	
	Planning of a sub-surface exploration program -Factors to be considered	
	Reconnaissance, preliminary and detailed investigation.	
	I.S guidelines for deciding the number, size, spacing and depth of boreholes	
	Exploration techniques	
1	Methods of exploration- open pits, trenches, shafts, boreholes. Methods of boring	9
	- Auger boring, wash boring, percussion drilling, rotary drilling	
	Sampling	
	Soil Sampling- disturbed and undisturbed soil samples- representative and non-	
	representative samples, chunk and tube samples,	

	Sounding Methods	
	Standard Penetration Test- procedure, Factors influencing the SPT results and	
	precautions to obtain reliable results- corrections to be applied to observed N	
	values- correlations of N value with various engineering and index properties of	
	soils-Field study from sites-Field visit and analysis of data	
2	Static cone penetration test-procedure-merits/drawbacks. Correlation of static	9
	CPT results with properties	
	Dynamic Cone penetration test-Procedure-merits/drawbacks-Critical comparison	
	of SPT, Static CPT and dynamic CPT	
	Plate load test -Procedure, uses, limitations-Design of foundation from the	
	analysis of data	
	Field Tests	
	Geophysical methods -Seismic refraction method- procedure, use, limitations.	
2	Electrical resistivity method-Electrical profiling and electrical sounding-	0
3	procedure, uses, limitations	9
	Field tests – Pressure meter Test procedure, uses -limitations, correlations.	
	Pile load tests- Procedure- analysis of results of data	
	Sampling, Report & Geosynthetics	
	Soil Sampling- disturbed and undisturbed soil samples- representative and non-	
	representative samples, chunk and tube samples, Area ratio clearance, outside	
	clearance-recovery ratio, Handling and transportation of sample, Types of	
	samplers-Thin walled sampler, Piston sampler-Split spoon sampler. Methods for	
4	collection of sand samples from beneath the water table	9
	Soil Investigation report	-
	Presentation of soil evaluation data - Bore log and soil profile	
	resentation of son exploration data – bore log and son prome.	
	Geosynthetics	
	Geosynthetics- Functions and applications from case studies - any field visit -	
	Pavements, Embankments, Railways, Erosion control from Kerala state.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each of which 1 question should be answered.		60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	The students will be able to understand the procedure, applicability and limitations of various methods of geotechnical investigation	K2
CO2	The students will be able to make judgements and take appropriate decisions related to geotechnical investigations	K4
СО3	The students will be able to understand the procedure and applications of penetration tests and geophysical tests for the exploration of the soil profile	К3
CO4	The students will be able to choose the right soil sampling technique, analyse the dependability of samples collected and understand the soil investigation report	К4
CO5	The students will be able to understand the functions and field applications of Geosynthetics from case studies from Kerala State	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2	2		2						3
CO2	3	2	2	2		2						3
CO3	3					3						3
CO4	3	2	2	2		2						3
CO5	3					2						3

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Basic and applied soil mechanics	Gopal Ranjan and Rao A.S.R	New Age International (P) Limited, New Delhi	5 th edition 2024						
2	Geotechnical Engineering	Venkataramaih	Universities Press (India) Limited, Hyderabad	^{6th} edition 2018						
3	Geotechnical Ground Investigation	Myint Win Bo	World Scientific Publishing Company	2022						

	Reference Books								
Sl. No	Title of the BookName of the Author/sName of the Author		Name of the Publisher	Edition and Year					
1	Geotechnical Engineering Investigation Handbook	Hunt R.E. (2005)	, Mc GrawHill, New York	Second Edition 2005					
2	Principles of Geotechnical Engineering, Seventh Edition, Cengage Learning Inc, Stamford, USA	Braja M Das (2010)	Cengage Learning Inc, Stamford, USA	Seventh Edition (2010)					
3	Soil Mechanics & Foundation Engineering	Purushothama Raj P	Pearson Education India.	(2008)					

Video Links (NPTEL, SWAYAM)					
	Link ID				
1	https://nptel.ac.in/courses/105105039				
2	https://nptel.ac.in/courses/105103182				

RAILWAY, PORT AND HARBOR ENGINEERING

Course Code	PECET754	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET502	Course Type	Theory

Course Objectives:

1. To understand the components and geometric design of railway tracks, construction of railway track, operational and control systems in functioning of the entire rail system.

Module	Syllabus Description					
No.						
	Role of Railways in the development of a Nation- Development of railways					
	in India-Track Alignment- Basic requirements- Factors in selection of					
	suitable alignment-Surveys for track alignment- Permanent way and					
	Railway track components- Functions of various components- Rails,					
	Sleepers, Ballast, - Rails - types of rails, rail sections- defects in rails, creep					
1	of rails, theories- Measurement of creep- Prevention of creep. Rail fixtures					
	and fastenings, rail joints and welding of rails, Sleepers - types, spacing	9				
	and density, Ballast - types, advantages and disadvantages, Subgrade -					
	Functions- Material and its improvement (brief description only)- Concept					
	of Gauges-Selection of Gauge-Uniformity of gauge. Coning of wheels-					
	Theory of coning- advantages and disadvantages.					
	Geometric design of track: gradients, grade compensation, speed of trains					
	on curves, super elevation, cant deficiency, negative super elevation, curves,					
	types (brief description), necessity of providing transition curve, length of					
2	transition curve, widening on curves. Points and crossings-Necessity -					
	Turnout- components- Crossings- Components- Design features of turnout-	9				
	Types of Track Junctions-Construction of Railway Track- Earthwork					
	and consolidation- Plate laying- Laying of ballast.					

3	Classification, requirements and characteristics of good harbour, and principles of harbour planning, site selection- Layout of harbour-Shape of harbour, harbour depth, Ship characteristics. Effects of natural phenomena on marine structures- Tides, Wind, Water waves Littoral drift. Marine Structure- General design aspects, Breakwaters - function, types, general design principles, construction methods, Wharves, Quays, Jetties, Piers, Pier heads, Dolphin, Fenders, Mooring Accessories.					
4	Navigational Aids- Necessity, Types of navigation aids, Requirement of signals, Fixed and floating navigation aid- Docking and Repair Facilities- wet dock, classification-different types-design considerations- operation of lock gates and passage- Dry dock- Graving dry dock- design aspects- floating dry dock- design aspects- Port Facilities- Port building facilities, Transit sheds, Warehouses, Cargo handling facility, Services for shipping terminals, Inland port facilities planning.	9				

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge
	Course Outcome	Level (KL)
CO1	Identify factors affecting alignment of railway track for a given terrain and to explain the component parts of railway tracks, its functions, and materials of making	К3
CO2	Carry out geometric design of railway track and to explain the construction procedure of railway tracks	К3
СО3	Explain the basic principles, site selection characteristics and lay out of ports and harbours and the basics of docks.	K2
CO4	Understand the concepts of various structures on harbours and navigational aids for communication.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2		3	3	2	1			3
CO2	3	2	2	2		3	3	2	1			3
CO3	3	2	2	2		3	3	2				3
CO4	3	2	2	2		3	3	2				3

Text Books								
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year				
1	Railway Track Engineering,	Mundrey J. S,	Tata McGraw Hill	5th edition 2017				
2	Harbour. Dock & Tunnel Engineering,	Srinivasan,R.,	Charotar Publishing House,	28e, 2016				
3	Railway Engineering.	Rangawala, S.C.	Charotor Publishing House	27th edition 2017				
4	A course in Docks and Harbour Engineering,	Bindra. S.P.,	Dhanpat Rai& Sons	January 2012				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Railway Engineering	Chandra, S. and Agarwal, M.M.	Oxford University Press, New Delhi	Second edition 2013			
2	Railway Engineering.	Saxena, S. C and Arora, S. P,	Dhanpat Rai & Sons,	7e, 2015			
3	Dock and Harbour Engineering	H P Oza and G H Oza,	Charotar Publishing House	8th Edition 2017			

Video Links (NPTEL, SWAYAM)					
Module No.	Link ID				
1	http://acl.digimat.in/nptel/courses/video/105107123/105107123.html				
2	http://acl.digimat.in/nptel/courses/video/105107123/105107123.html				
3	http://www.digimat.in/nptel/courses/video/114106025/114106025.html				
4	http://www.digimat.in/nptel/courses/video/114106025/114106025.html				

AIR AND NOISE POLLUTION CONTROL ENGINEERING

Course Code	PECET756	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:3:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To understand the various air pollutants, its sources, monitoring methods, control methods and regulations
- 2. To familiarise the concept of noise pollution and its control

Module	Syllabus Description	Contact
No.	Synabus Description	
	Air pollutants, Sources, classification, Combustion Processes and pollutant	
1	emission, Effects on Health, vegetation, materials and atmosphere, Reactions	
1	of pollutants in the atmosphere and their effects, Smoke, smog and ozone	7
	layer disturbance, Greenhouse effect.	
	Air sampling and pollution measurement methods, principles and instruments,	
2	ambient air quality and emission standards, Air pollution indices, Air Act,	9
	legislation and regulations	
	Control principles, Removal of gaseous pollutants by adsorption, absorption,	
	reaction and other methods. Particulate emission control, settling chambers,	
3	cyclone separation, Wet collectors, fabric filters, electrostatic precipitators and	9
	other removal methods like absorption, adsorption, precipitation etc.	
	Biological air pollution control technologies, Indoor air quality	
	Noise pollution: Basics of acoustics and specification of sound; sound power,	
4	sound intensity and sound pressure levels; plane, point and line sources,	
4	multiple sources; outdoor and indoor noise propagation; psychoacoustics and	11
	noise criteria, effects of noise on health, annoyance rating schemes; special	

noise environments: Infrasound, ultrasound, impulsive sound and sonic boom;
noise standards and limit values; noise instrumentation and monitoring
procedure. Noise indices. Noise control methods

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	A	Internal	Internal	
Attendance	Microproject	Examination-1	Examination- 2	Total
		(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand sources of air pollution, air pollution problems, and Demonstrate a detailed knowledge of study the effect of meteorological parameters in the dispersion of air pollutants	К3
CO2	Analyze Environment legislation and regulations for air and noise pollution	К3
СО3	Evaluate efficiency of various air pollution control devices used for particulate removal	К3
CO4	Design, operate and control the devices used for noise emission control	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					2	2					
CO2	3					2	2					
CO3	3					2	1					
CO4	3					3	2					

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Environmental Pollution Control Engineering	C. S. Rao	Wiley Eastern Limited	2000			
2	Air pollution	M. N. Rao, H. V. N. Rao	Tata McGraw Hill Pvt. Ltd, New Delhi	1993			
3	Noise Pollution	G.K. Nagi, M.K. Dhillon, G.S. Dhaliwa	Commonwealth Publishers,	1999			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Sewage Disposal and Air Pollution Engineering	S.K. Garg	Khanna publishers	2024			
2	Environmental pollution analysis	S.M. Khopkar	New Age International Publications	2020			

Video Links (NPTEL, SWAYAM)				
Sl.No.	Link ID			
1	https://archive.nptel.ac.in/courses/105/107/105107213/			
2	https://onlinecourses.nptel.ac.in/noc22_me52/preview			

FINITE ELEMENT METHOD

Course Code	PECET757	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET403	Course Type	Theory

Course Objectives:

 This course provides the fundamental concepts of finite element method and its applications in structural engineering. As a natural development from the matrix analysis of structures, the student is encouraged to appreciate the versatility of this method across various domains, and also as the basis of many structural analysis software. This course introduces the basic mathematical concepts of the method and its application to simple analysis problems.

Module	Syllabus Description	Contact		
No.	Syndous Description			
1	General Introduction –introduction to boundary value problems – approximate numerical solutions for solving differential equations – least square method – collocation method – Galerkin method – introduction to finite element method- advantages and disadvantages.	9		
2	Brief review of matrix methods – Direct stiffness method – truss and beam element – Coordinate transformation –global assembly –Estimation of element forces. Interpolation and shape functions- polynomial approximations for 1D and 2D elements using Lagrange polynomials – CST, LST and bilinear rectangular elements	9		
3	Formulation techniques – Variational approach and weighted residual approach – formulation of element equations for 1D bar element, 1D beam element and CST element. Isoparametric, sub-parametric and super- parametric elements	9		
4	Development of stiffness matrix for bar element and beam element -			

Introduction to high	er order elements - introduction to axisymmetric	9
elements – Numeric	al Integration - Gauss quadrature. Discussion of	
modelling and analy	sis using recent commercial finite element software	
packages		

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

		Internal	Internal	Total	
Attendance	Assignment/ Microproject	Examination-1	Examination- 2		
		(Written)	(Written)		
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the basic features of boundary value problems and methods to solve them	К2
CO2	Get familiar with the basic element types and shape functions so as to identify and choose suitable elements to solve a particular problem.	К3
СО3	Understand the fundamental concept of the finite element method and develop the ability to generate the governing FE equations for systems governed by partial differential equations	К3
CO4	Understand the concepts of isoparametric elements and apply it for problems in structural engineering	К3
C05	Apply numerical integration procedures as a tool to solve mathematical models in FEM	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1								
CO2	3	3	2	1								
CO3	3	3	1	1								
CO4	3	3	1									
CO5	3	3	1	1								

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Elementary Finite element method	Desai C.S.	Prentice Hall of India	1979			
2	Introduction to Finite Elements in Engineering	Chandrupatla T.R. and Belegundu A.D.	Cambridge University Press	5 th Ed 2021			
3	Concepts and Applications of Finite Element Analysis	Cook R.D.	John Wiley	2001			

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Finite Element Procedures in Engineering Analysis	Bathe K.J.	Prentice Hall of India	1995		
2	Finite Element Analysis in Engineering Design	Rajasekaran S	Wheeler Pub.	2006		
3	Finite Element Analysis Theory and programming	Krishnamoorthy C.S.	Tata McGraw Hill	2017		
4	Fundamental Finite Element Analysis and Applications with Mathematics and Matlab computations	Bhatti, Asghar	Wiley	2012		
5	Finite element method	Zienkiewicz O C and Taylor R W	Elsevier Butterworth- Heinemann, UK	2007		

Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID			
1	https://onlinecourses.nptel.ac.in/noc22_me43/preview			
2	https://archive.nptel.ac.in/courses/105/106/105106051/			

DESIGN OF HYDRAULIC STRUCTURES

Course Code	PECET755	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. This course introduces the fundamental hydraulic design concepts of different hydraulic structures
- **2.** This course equips the students to perform the hydraulic design of minor irrigation structures such as cross drainage works; canal falls and regulators.
- 3. This course enables the student to develop/prepare the drawings of minor irrigation structures.

Module	Syllabus Description	Contact
No.	Synabus Description	Hours
	Diversion head works- layout and functions of components, Weir and	
	barrage- Causes of failure of weirs on permeable soils - Bligh's theory and	
	Khosla's theory. Design of vertical drop weir. Design of impervious floor of	
1	hydraulic structures by Khosla's theory	9
	Cross drainage works-Types, selection of suitable type, Type of aqueducts.	
	Regulation Works - Canal falls-necessity, classification. Canal regulators-	
	Regulator cum road bridge- Head regulators and cross regulators.	
	Hydraulic design and Drawing of the following hydraulic structures: 1.	
2	Tank sluice 2. Canal Fall (Trapezoidal Notch type) 3. Syphon Aqueduct	9
	(Type III) 4. Syphon Well Drop5. Canal Regulator (Using Khosla's Theory	
	Dams-Types, Gravity dam - selection of site- forces acting - stability	
2	analysis and modes of failure - Principal and shear stresses Problems -	0
3	Elementary profile -limiting height of gravity dams high and low dams-	9
	Practical profiles, Functions of various components shafts, keys, water stops,	

	and different types of galleries, Grouting. Instrumentation in dams (Concept	
	only)	
	Earth dams-types, causes of failure and design criteria, Arch dams- thin	
4	cylinder theory; Spillways-types-Ogee spillway profile; Energy dissipation-	0
	stilling basins-Indian standard Type I and Type II (description only) Arch	9
	dams-types, methods for design (list only)-Thin cylinder theory	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Assignment

- 1. Preparation of spread sheet for the design of of hydraulic structures mentioned in the second module
- 2. Prepare the design and drawings hydraulic structures mentioned in the second module in A2 Sheet.
- 3. Identify any practical requirement for a hydraulic structure and complete its design.

Criteria for evaluation:

- 1. Defining objectives (K4 4 points).
- 2. field data collection (K4 4 points)
- 3. Analysis of data (K5 4 points)
- 4. Verification with standard specification or rating (K5 4 points)
- 5. Final design (K4- 2 points, K5 2 points)
 - a. Summarizes findings and insights. (K4)
 - b. Reflects critical thinking and informed decision-making. (K5)

Scoring:

1. Accomplished (4 points): Exceptional analysis, clear implementation, and depth of understanding.

- 2. Competent (3 points): Solid performance with minor areas for improvement.
- 3. Developing (2 points): Adequate effort but lacks depth or clarity.
- 4. Minimal (1 point): Incomplete or significantly flawed.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions. (Detailed drawings not expected and regular answer book will be provided)

Part A	Part B	Total
• 2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each	
• Total of 8 Questions,	question can have a maximum of 3 sub divisions.	60
each carrying 3 marks	Each question carries 9 marks.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Elucidate the causes of failure, principles of design of different	K3
	components of hydraulic structures	
CO2	Perform the hydraulic design of existing minor irrigation structures	K3
	such as cross drainage works, canal falls, cross regulator by group	
	activity	
CO3	Prepare the scaled drawings of different minor irrigation structures	K3
CO4	Analyse the designs principles and features of dams and perform the	K4/K5
	stability analysis of gravity dams	
CO5	Apply the design criteria of earthen dam and arch dams	K4, K5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		2	2		3		2		3
CO2	3	3	3	3	2	2		3	3	2		3
CO3	3	3	3		2	2		3	3	2		3
CO4	3	3	3	3	2	2	3	3		2		3
CO5	3	3	3	3	2	2	3	3		2		3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Irrigation Engineering and	Garg S.K	Khanna Publishers	2023 (38th			
	Hydraulic Structures			R edition)			
2	Irrigation, Water Resources and	Modi. P. N	Standard Book House	2020			
	Water Power Engineering						
2	Irrigation and Water Power	Punmia B.C, B.B.	Laxmi Publications (P)	2010(12th			
5	Engineering.	Pande Lal	Ltd.	edition)			
	Water Resources Engineering-	Sathyanarayana M. C.	New Age International	2020 (2nd			
4	Principles and Practice		Publishers	Revised			
				edition)			
	Irrigation, Water Resources and	K R Arora	S.B.H Publishers and	2010			
5	Water Power Engineering		Distributors, New				
			Delhi.				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Theory & Design of Irrigation Structures -Vol III	Varshney, R.S	Nem Chand & Bros., Roorkee	2001(5 th edition)			
2	Irrigation and Water Resources Engineering	Asawa. G.L	New Age International Publishers	2008			
3	Irrigation Engineering & Hydraulic Structures	Sahasrabudhe S.R.,	S.K. Kataria & Sons	2013			

INTELLIGENT TRANSPORTATION SYSTEMS

Course Code	OECET721	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understand the need of the ITS and ITS System requirements
- 2. List the various ITS user services and identify their major components
- **3.** Suggest the appropriate tools and components in various functional areas of transportation for field conditions.
- **4.** Identify the importance of automated highway systems and new technology applications in autonomous vehicles

Module	Syllabus Description	Contact
No.	Synabus Description	Hours
	Introduction to Intelligent Transportation Systems:	
	Basics of ITS: History of ITS, Urbanisation and motorisation, Transport	
1	system characteristics and problems. ITS- components, importance, need,	0
1	challenges. ITS initiatives in India	9
	Understanding ITS: Functionalities required for user service, ITS	
	architecture, ITS technology building blocks (introduction only)	
	Traffic management and ITS: Traffic management – objectives, measures,	
	application of ITS for traffic management	
	ITS user services and applications: (introduction only)	
2	ATIS advanced traveller information system- Introduction, Functional areas,	0
2	components. AVCS-advanced vehicle control system, APTS- advanced	9
	public transportation system, CVOS-commercial vehicle operation system	
	Application of ITS- Emergency management- objectives, components,	
	benefits	

	Electronic toll collection- objectives, components.					
	Fleet management and operations					
	Transport Demand management and ITS: Introduction, Application of ITS					
	for TDM- Promotion of Public transport, Road pricing, parking					
	management, High occupancy lanes, Bicycle rentals, carpooling, integrated					
3	fare, traffic rule enforcement, Incentive schemes.	9				
	Use of GPS and GIS in ITS: Introduction to GPS and GIS, Automatic					
	vehicle location and identification, real time passenger information, GSM					
	Technologies.					
	Automated Highway systems:					
	AHS: Introduction, Concepts and technologies of AHS, Connected vehicle					
	system, Vehicle automation, Benefits, goals, challenges with AHS.					
	Sensing Technologies: In vehicle- categories, examples, Issues, In road-					
4	intrusive, non-intrusive, application, uses.	9				
	Smart Roads: concepts and technologies, smart street lights, smart					
	intersection					
	Self driving car: Technology, examples					
	ITS case studies: world examples, Indian examples.					

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the need of the ITS and ITS System requirements	K2
CO2	List the various ITS user services and identify their major components	K2
СОЗ	Suggest the appropriate tools and components in various functional areas of transportation for field conditions.	К2
CO4	Identify the importance of automated highway systems and new technology applications in autonomous vehicles	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									
CO2	3	2	1									
CO3	3	2	3									
CO4	3	3	2									

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Intelligent transport systems	Pradip Kumar Sarkar and Amit Kumar Jain	PHI Learning Private Limited	2018							
2	Fundamentals of Intelligent Transportation Systems Planning	M.A. Chowdhury and A. Sadek	Artech House,	2010, First Edition							
3	Automated Highway Systems,	Petros A. Ioannou,	Springer Science & Business Media	2013							
4	Intelligent Transport Systems Standards,	Bob Williams,	Artech House Publishers,	2008							

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Transportation Engineering: An Introduction, ,	C. J. Khisty and B. K. Lall	Prentice- Hall India	2002
2	ITS Hand Book 2000: Recommendations for World Road Association (PIARC)	PIARC Committee on Intelligent Transport	Artech House	2000
3	Systems Engineering for Intelligent Transportation Systems-an introduction to transportation professionals,	FHWA, Department of Transportation,	Federal Highway Administration	January 2007

	Video Links (NPTEL, SWAYAM)						
Sl No.	Link ID						
1	https://archive.nptel.ac.in/courses/105/101/105101008/						

ENVIRONMENTAL HEALTH AND SAFETY

Course Code	OECET722	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To build environmental health literacy among students and encourage them to take safety measures against various environmental hazards.
- **2.** To motivate the students in maintaining and improving the quality of the environment and empower learners to take appropriate actions to reduce the environment pollution.

Module	Syllabus Description					
No.						
1	Introduction to Occupational Health And Toxicology: Safety at work – Socio – Economic reasons. Introduction to health and safety at various industries. occupational related diseases-Musculoskeletal disorders, hearing impairment, carcinogens, silicosis, asbestosis, pneumoconiosis – Toxic materials and substances used in work, exposure limits, toxicological investigation, Industrial Hygiene, Arrangements by organisations to protect the workers.	7				
2	Chemical hazards- Dust, fumes, vapour, fog, gases; Methods of Control. Biological hazards- Classification of Biohazardous agents– bacterial agents, viral agents, fungal, parasitic agents, infectious diseases, control of biological agents at workplaces. Noise, noise exposure regulation and control. Radiation Hazards, Types and effects of radiation on human body, disposal of radioactive waste.	9				
3	Safety in Construction industry - Scaffolding and Working platform, Welding and Cutting, Excavation Work, Concreting, control measures to	9				

	reduce the risk. Electrical Hazards, Protection against voltage fluctuations, Effects of shock on human body.	
4	Safe working environment - The basic purpose and benefits of safety inspection, First-aid appliances, shelters, rest rooms and lunch rooms, use of personal protective equipment, Role of an individual in conservation of natural resources, Methods for controlling water pollution, role of individual in prevention of pollution.	11

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment	Internal	Internal	Total	
Attendance	Microproject	Examination-1 (Written)	Examination- 2 (Written)		
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the Toxicology and Occupational Health associated with industries.	K2
CO2	Identify chemical and microbial agents that originate in the environment and can impact human health.	K2
CO3	Describe various measures to ensure safety in Construction industry.	K2
CO4	Describe the safety measures against various environmental hazards.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					2	2					
CO2	3					2	2					
CO3	3					2	1					
CO4	3					3	2					
CO5	3					2	2					

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Environmental and Health and Safety Management	By Nicholas P. Cheremisinoff and Madelyn L. Graffia	University College London Press LimitedWilliam Andrew Inc. NY	1995			
2	Effective Environmental, Health, and Safety Management Using the Team Approach	Bill Taylor	Culinary and Hospitality Industry Publications Services	2005			

Reference Books							
Sl. No	Title of the Book	Name of the Author/s Name Publ		Edition and Year			
1	Handbook of Occupational Safety and Health	Slote. L	JohnWilleyand Sons, NewYork	2019			
2	Industrial Accident Prevention	Heinrich H.W	McGrawHill Company,NewYork	1980			
3	Pollution control in process industries	S.P.Mahajan	Tata McGraw Hill Publishing Company, New Delhi	1993			

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID				
1	https://archive.nptel.ac.in/courses/114/106/114106017/				

WATERSHED CONSERVATION AND MANGEMENT

Course Code	OECET723	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:3:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To develop watershed management program, making proper use of all available resources.
- 2. To obtain optimum output from watershed with minimum hazards to natural resources.

Module	Syllabus Description	Contact	
No.			
	Introduction to Watershed Management: Definition and importance of watersheds - Watershed functions and processes -Watershed management		
	objectives and principles- Integrated and multidisciplinary approach for		
1	 watershed management. Hydrological Cycle and Watershed Characteristics: Components of the hydrological cycle - Watershed characteristics (size, shape, slope, drainage pattern -Hydrological processes in watersheds (precipitation, infiltration, runoff) Importance of Watershed Properties: Effect of Physical Properties, Effect of Geomorphologic Factors & Associated Processes 	9	
2	Soil and Water Conservation Techniques : Soil erosion- types, causes, and effects, Soil conservation methods (contour plowing, terracing, strip cropping), Water conservation techniques (rainwater harvesting, check dams, recharge pits)	9	

	 Role of Vegetation in Watershed Management: Importance of vegetation in soil and water conservation - Types of vegetation and their roles in watershed health - Afforestation and reforestation practices Drought management- Drought assessment, Drought analysis- Drought mitigation 	
3	 Watershed Management Planning and Implementation: Steps in watershed management planning - Community involvement in watershed management - Case studies of successful watershed management projects Environmental and Socio-Economic Considerations: Environmental impact assessment of watershed projects - Social and economic benefits of watershed management - Policy and legal frameworks for watershed management - Watershed management for conservation of resources and enhancing productivity in problem lands 	9
4	 Watershed Modeling and Geographic Information Systems (GIS): Introduction to watershed modelling- Use of GIS in watershed management - Applications of remote sensing in watershed analysis Delineation and Prioritization-Concept of Topographic or Contour Map, Boundary Delineation, GIS for Delineation, Accuracy in Delineation, Concept of Priority, Factors, Basics & Methods, Purpose & Benefits Land Management: Land use and Land capability classification, management of forest, agricultural, grassland and wild land. Reclamation of saline and alkaline soils Integrated watershed modelling – basic concepts 	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5 15		10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each of which 1 question should be answered.		
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	To understand the concepts and importance of watershed management.	K1
CO2	To learn the techniques for soil and water conservation.	K3
CO3	To develop skills for designing and implementing watershed management plans.	К3
CO4	To assess the environmental, social, and economic impacts of watershed projects.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					2	2					1
CO2	3	2	1	1	1	2	1					1
CO3	2	2	1	1	2	2	2	1			2	1
CO4	3	2	1	1	1	2	3	3				1

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Watershed Management	JVS Murthy	New Age International	revised edition -1998			
2	Land and Water Management	VVN Murthy	Kalyani Publication	2015			
3	Irrigation and Water Management	D K Majumdar	Prentice Hall of India	revised edition -2001			
4	Hydrology and Watershed Management	Vijay P. Singh and Ram Narayan Yadava	Allied Publishers	2003			
5	Soil and Water Conservation Engineering	R. Suresh	Standard Publishers Distributors	2 nd edition 2005			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Integrated Watershed Management: Principles and Practice	Isobel W. Heathcote	Wiley	2 nd edition 2009			
2	Water Resource Engineering	R. Awurbs and WP James	Prentice Hall	revised edition 2001			

Video Links (NPTEL, SWAYAM)	
Sl. No.	Link ID
1	https://archive.nptel.ac.in/courses/105/101/105101010/
FORENSIC ENGINEERING

Course Code	OECET724	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. This course explores various aspects of Forensic Engineering and different methods, tools and procedures used by Engineers to investigate and analyze .
- 2. The students will learn to develop their awareness in Forensic Engineering.

Module	Syllabus Description	Contact
No.	Synabus Description	Hours
	Introduction to Forensic Engineering - Forensic Engineering – Definition,	
	Investigation Pyramid, Eyewitness Information, Role in Legal system,	
	Scientific Method – Applying scientific method in forensic engineering –	
1	engineer as expert witness - scientific methods and legal system,	9
	Qualification of forensic engineer – Technical knowledge – oral and written	
	communication - other skills - personality characteristics, Ethics and	
	professional responsibilities	
	Forensic Engineering Workflow and Investigation Methods - Forensic	
	Engineering Workflow-Team &planning-preliminary onsite investigation.	
	Sampling-selection of sample-collection- packing-sealing of samples, Source	
2	and type of evidence - Paper documentation- digital documentation-	9
2	electronic data. Physical Evidence-Collection of photograph-cataloguing -	
	Recognizing the Evidence-organizing Evidence Analysis -Reporting,	
	Investigation Methods- Cause and Causal mechanism analysis-Time and	
	event sequence-STEP method. Human Factors, Human errors - Analysis of	

	Operative Instruction and working Procedures	
3	Physical Product Failure & Analytical Methods - Introduction to typical Forensic Engineering Tool box-NDT, Crack detection and human eye - Hardness testing- and Destructive testing Methods with case studies, Indirect stress strain Analysis-Brittle lacquer technique, Contact Radiography- Metallography-EDAX method , Forensic Optical Microscopy-Examination- Magnification-USB Microscopy -Wifi Enabled microscopy -Reflected microscopy, Novel Tools and System -Contour Method-Flash Thermography, Thermographic signal reconstruction (TSR)- Electromagnetically induced acoustic Emission (EMAE)-Pulsed Eddy Current (PEA)-Theory only	9
4	Engineer in the Court room & Criminal Cases - Role of an Engineering Expert-Report-pre trial meetings-Alternative dispute resolution-Single joint expert. Engineer in the court room, Criminal Cases-Introduction-Counterfeit coins-fraudulent road accidents-Fraudulent Insurance claims, Cyber Crimes and Cases- SIM Swapping -ATM Cloning-Microsoft Internal Spam-Intellectual property cases.	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	A	Internal	Internal		
Attendance	Assignment/ Microproject	Examination-1	Examination- 2	Total	
	whereproject	(Written)	(Written)		
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the fundamental aspects of forensic Engineering	K2
CO2	Apply forensic Engineering in Practical work flow and Investigation	K3
CO3	Apply methods and analysis in Forensic Investigation	K4
CO4	Develop practical strategies and standards of Investigation	K4
C05	Create an awareness in criminal cases and create Engineering expertise in court room on forensic Engineering	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3				3		3			3
CO2	3	3	3				3		3			3
CO3	3	3	3				3		3			3
CO4	3	3	3				3		3			3
CO5	3	3	3				3		3			3

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Forensic Engineering The Art &Craft of a failure detective	Colin R Gagg,	Taylor & Francis Publishing	2020		
2	Principles of Forensic Engineering Applied to Industrial Accidents	Luca Fiorentini ,Luca Marmo	Wiley	2019		
3	Forensic Engineering Fundamentals	Harold Franck, Darren Franck	Taylor & Francis	2013		
4	Forensic Engineering Investigation	Randall K Noon	CRC press	2001		
5	Guidelines for forensic Engineering practice	Joshua B Kardon	ASCE	2012		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Engineering standards for forensic Applications	Richard W. Mclay and Robert N. Anderson	Academic Press	1 st edition, 2018		
2	Forensic Engineering (Advanced forensic Science)	Max M Houck	Academic Press	1 st edition, 2017		
3	Practical Cyber Forensics. An Incident-based Approach to Forensic Investigations	Niranjan Reddy	Apress	2019		
4	Forensic Materials Engineering Case Studies	Peter Rhys Lewis, Ken Reynolds, Colin Gagg	CRC Press	2003		
5	Forensic Engineering: Damage assessment for residential and commercial structures	Stephen E Petty	CRC press	2 nd edition, 2017		

FINANCE FOR ENGINEERING

Course Code	OECET725	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

 The course details the fundamental concepts of engineering economics, construction accounting, financial management and basic tools used in the economic decision making of construction projects. The course helps the students acquire knowledge on basic financial management aspects and economics to facilitate the process of economic decision making effectively.

Module	Syllabus Description	Contact
No.		
	Introduction to Book keeping and Accounting - Accounting Process -	
	Purpose of accounting - Classification of accounting - Generally Accepted	
	Accounting Principles - Conventions and Concepts - Double entry system	
1	of accounting – Preparation of Journal, Ledger and Trial Balance.	10
	(Illustrative problem)	
	Introduction to financial statements - Preparation of Profit & Loss Account	
	and Balance Sheet. (Simple problems)	
	Rate of Return method – Minimum attractive rate of return (MARR),	
	Internal Rate of Return (IRR) - Economic Decision Making using	
2	Incremental Rate of Return (IRoR) Analysis of public projects – Benefit cost	10
	analysis – applications.	10
	Breakeven analysis – Fixed and variable cost – Total cost – Breakeven point	
	and breakeven chart– Interpretation, limitations.	

3	 Working capital – Operating cycle – Working capital management – Sources of finance - long term and short term financing. Financing of PPP projects – Sources of project finance – Providers of finance – Financial structure – Financial indicators – Special nature of infrastructure financing need. 	8
4	Construction Economics – Definition and scope. Time value of money – Simple and Compound interest – Time value equivalence –Cash flow diagrams – Interest calculations – Compound interest factors – Interest tables. Evaluating alternatives by equivalence – Present worth comparison – Future worth comparison – Annual cost and worth comparison.	8

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the principles and process of accounting.	К2
CO2	Apply basic analysis tools like rate of return, benefit cost, and breakeven analysis in economic decision making.	К3
CO3	Prepare financial statements and apply revenue recognition methods.	K3
CO4	Explain the basics of financial management and sources of finance for a project.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2										1	
CO2	3										3	
CO3	3										2	
CO4	3										2	

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Construction Project Management	Kumar Neeraj Jha	Dorling Kindersley (India) Pvt. Ltd	2nd ed. Pearson, 2015			
2	Engineering Economy	Leland Blank, and Anthony Tarquin	McGraw Hill	Seventh Edition,2012			

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Accounting Made Easy	Agrawal R and Sriniwasan, R	Tata McGraw-Hill	2005		
2	Engineering Economy	Theusen G.J. and Fabrycky W.J.	Prentice-Hall, Inc.	9th Edition, 2001		
3	Finance for Engineers- Evaluation and Funding of Capital Projects	Crundwell F.K.	Springer, London (ISBN 978-1-84800-032-2)	2008		

NPTEL - Link ID
NPTEL :: Civil Engineering - NOC: Introduction to Accounting and Finance for Civil Engineers

SEMESTER 8 CIVIL ENGINEERING

WATER AND AIR QUALITY MANAGEMENT

Course Code	PECET861	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide knowledge of aquatic ecology, water pollution, water quality standards, water quality assessment and its management
- 2. Students would get an insight into the dispersion of air pollution in the atmosphere, its sources, sampling techniques and control measures.

Module No.	Syllabus Description	Contact Hours
1	Water quality: impurities (pollutants and contaminants) in water, their significance and estimation techniques; water borne diseases; standards of potable water. Impact of water pollutants on environment; self-purification of waste in streams; zones of purification; eutrophication; disposal standards	7
2	Water treatment: Aeration and types of aerators; purpose and mechanism of flocculation; coagulants used in water treatment; factors influencing coagulation; estimation of coagulant dose; types of flash mixers and flocculators; sedimentation; analysis of discrete and flocculent settling; sedimentation tanks; Filtration: types and design of filters, Disinfection: chemical and non-chemical methods	9
3	Water resources and quality management in India : Water availability; water stress index; status and trend of surface and groundwater; issues and policy	9

	interventions; pollution of rivers, lakes and ground water; GAP and National	
	River Action Programme; role of national and international agencies in water	
	health and sanitation.	
4	Air Pollution: Types, Sources, Effects on human health, vegetation, materials, global environmental issues. Air sampling and pollution measurement methods, principles and instruments, ambient air quality and emission standards, Air pollution indices, Air Act, legislation and regulations Control principles, Removal of gaseous pollutants by adsorption, absorption, reaction and other methods. Particulate emission control	11

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Gain insight into key concepts of water quality, water quality and health, impairment of natural water bodies	K2
CO2	Comprehend components of water treatment and schemes based on source of water, select suitable unit process and unit operation at conceptual, theoretical, methodical level	К3
CO3	Develop an integrated perspective on water resource and water quality management	К3
CO4	Design, operate and control the devices used for air quality management	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					2	2					
CO2	3					2	2					
CO3	3					2	1					
CO4	3					2	2					

	Text Books										
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year							
1	Water Supply and Sanitary Engineering	Birde G.S. and Birde J.S	7th ed., New Delhi, Dhanpat Rai Publishing	2004							
2	Air pollution	M. N. Rao, H. V. N. Rao	Tata McGraw Hill Pvt. Ltd, New Delhi	1993							
3	BasicEnvironmentalTechnology:WaterWasteManagementPollutionControl	Nathanson J.A.	4th ed., New Delhi, PHI Learning	2009							

	Reference Texts										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Handbook Of Environment And Waste Management: Air And Water Pollution Control	Lawrence K Wang, Nazih K Shammas, Yung-tse Hung	World Scientific Publishing Company	2012							
2	Water and Air Effluents Treatment Handbook	NPCS Board of consultants and Engineers	ASIA PACIFIC BUSINESS PRESS Inc.	2009							

Video Links (NPTEL, SWAYAM)							
Sl. No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc24_ag06/preview						
2	https://archive.nptel.ac.in/courses/105/107/105107213/						

Course Code	PECET862	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET601	Course Type	Theory

VALUATION OF REAL PROPERTIES

Course Objectives:

 This course introduces the principles and methodologies involved in the valuation of real properties. It covers fundamental concepts in real estate appraisal, exploring various approaches to property valuation, market analysis, and regulatory considerations. Through theoretical discussions, case studies, and practical exercises, students will gain the skills and knowledge necessary to assess the value of different types of real estate.

Module No.	Syllabus Description	Contact Hours
1	Role of valuer-Classification-Valuers' Functions & Responsibilities. Purpose- doctrine of estate-different form of value-factors affecting, aspects, characteristics. Supply and demand forces, factors affecting demand and supply-Cost, Price & Value Type of interest (right) in land-Free hold-Lease hold, Forms of lease, Mortgage Income, Outgoings-Type, sinking fund, Year's Purchase Numerical examples. Valuation table-use	8
2	Investment-Type-characteristics of ideal investment Appraisal technique – Net present value (NPV) by discounted cash flow method (DCF), Internal rate of return (IRR)-Numerical Example. Life of various types of buildings - Depreciation- Obsolescence-Functional & Economical -difference between depreciation and obsolescence Method of estimating cost depreciation- Numerical examples	8

	Building FSI – Plot coverage – Types of structure Method of Valuation for					
	open land- Comparative method, Abstractive method, Belting method-					
	Numerical examples					
	Method of valuation of land with buildings- Rental method, direct comparison					
3	of the capital, Valuation based on profit- Numerical examples	10				
	Valuation of apartment-FSI – Super built-up area, Undivided share of land					
	Valuation for bank-Purposes – Security, Primary and collateral					
	Report writing for various purposes of valuation-Sale, Purchase, Mortgage,					
	Taxation, Insurance, Liquidation etc					
	Environment & Valuation- Environmental factors affecting valuation					
	Professional ethics- Model Code of Conduct as notified by MCA under the					
	Companies (Registered valuers and valuation) Rules 2017 - Ethical					
	considerations under terms of engagements					
	Salient features of Real estate (regulation & development) Act 2016, Transfer					
4	of property Act, Land acquisition, Indian easement Act,	9				
	Estate Duty Act of 1953, Wealth Tax Act of 1957, Gift Tax Act of 1958,					
	Income Tax Act of 1964, Rating Laws of 1866 (brief description only)					
	Important case laws-Case study based on case laws					
	CPWD Rates, Cost Index, Cost Inflation Index					
	Valuation for Capital Gain Tax-Numerical examples					

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Define the technical terms involved in valuation of Real properties	K2
CO2	Identify the return on investment on real properties	K3
CO3	Prepare valuation of land and buildings	К3
CO4	Recall the important aspects of Acts related to valuation	K1

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	3											
CO3	3	2								2		
CO4								2				

Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Valuation of real properties	Rangwala	Charotar Publishing House Pvt. Ltd.	2020	
2	Basics in real estate valuation	P.T. Hardikar	P.T. Hardikar	2022	
3	Estimation and costing in civil engineering	B. N. Dutta	UBS publishers	28 th Rev. Edition, 2020	

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Real estate principles : A value approach	David Ling and Wayne Archer	McGraw-Hill Education	Fifth Edition, 2018			
2	Fundamentals of real estate appraisal	R. Martha Williams & L. William Ventolo	Real Estate Education Co.	1998			
3	Latest CPWD DAR and DSR						

	Video Links			
Module No.	Link ID			
2	www.onlinecourses.swayam2.ac.in/imb22_mg06/preview			

CONTRACTS MANAGEMENT

Course Code	PECET863	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET601	Course Type	Theory

Course Objectives:

- **1.** To provide students with a comprehensive understanding of the basic principles of contract law and their application in construction projects.
- **2.** To ensure students can identify the essential elements required for the formation of a valid contract.

Module No.	Syllabus Description					
	Introduction to contract management-Definition & importance, Type of contracts (Lump sum, item rate, EPC, BOT etc),					
1	Agreement and contract Indian Contract Act 1872 – Layout and Salient Features - Performance and	9				
	Non-performance of Contract - Breach of Contract - Consequences and Remedies - Liquidated Damages, Extension of Time					
2	Contract Documentation-Form of Agreement & Hierarchy of Terms and Conditions- Typical structure of contract- Preamble, Scope and Specifications- Preliminaries and General - Insurance policies, Bonds and Guarantees, Terms of Payment- Price adjustment- Assignments and	9				
	Subcontracting					

	Tendering and Bidding process-Prequalification, Invitation of tender, Bid	
	preparation and submission, Evaluation of bid and award of contract,	1
	Negotiation.	l
	Standard Forms of Contracts - FIDIC form of Contract.	l
3	Performance Bond - Programme of Work – Submissions and approvals - Progress Review Meetings - Certification and Interim Payments - Quality and Safety - Variation clauses and changes to the scope of work - Claims - Delay and disruption - Force majeure and Exceptional events - Suspension & Termination - Taking over and Substantial completion - Release of Performance Bond/Security - Defect Liability and Release of Retention Money - Contract closure and Final	10
	Conflicts, Disputes, and their causes - Conflict avoidance and tiered dispute	
	resolution clauses - Alternative Dispute Resolution Methods & Litigation -	1
4	Best practices in dispute resolution and management - General Provisions -	8
	Arbitration Agreement Composition of Arbitral Tribunal	1
	Aronanon Agreement, Composition of Aronan Infound	l

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the basic elements of conditions of contract.	K2
CO2	Recall provisions of Indian contract law & FIDIC	K1
CO3	Explain the various steps involved in the contract documentation	К3
CO4	Explain the process of dispute resolution in contracts	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			2								3	
CO2			2								3	
CO3			2							3		
CO4			2								3	

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Law of contract and specific relief	A. Md. Samiulla	Asia Law House	2016			
2	Construction project management	K.K.Chitkara	McGraw Hill Education	2010			

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Indian Contract Act (1872)					
2	FIDIC Contracts: Law and Practice	Ellis Baker, Ben Mellors , Scott Chalmers , Anthony Lavers	Informa Law from Routledge	2009		
3	Construction contract: Law and Management	John Murdoch , Ronan Champion , Will Hughes	Routledge	5th edition , 2015		

Video Links (NPTEL, SWAYAM)						
Module No.	Link ID					
1, 2	NPTEL :: Law - NOC: Advanced Contracts, Tendering and Public Procurement					

ADVANCED DESIGN OF STEEL STRUCTURES

Course Code	PECET864	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET602	Course Type	Theory

Course Objectives:

1. The proposed course is expected to enhance and strengthen the knowledge on detailed design methods for steel structures, in compliance with Indian codes

Module No.	Syllabus Description					
1	Types of bolts-Bearing and High strength bolts-Prying Force-Beam to Column connections-Design of seat angle-Unstiffened-Design of seat angle-Stiffened web angle & end plate connections, Beam and column bolted splices-Design of framed beam connection-continuous beam to beam connection	9				
2	Structure and properties of weld metal. Beam to-column connections- Stiffened beam seat connection-Web angle and end plate connections Tubular Connections-Parameters of an in-plane joint - Welds in tubular joints-curved weld length at intersection of tubes	9				
3	Design of plate girders subjected to uniformly distributed loads – design of stiffeners	9				

	Design of gantry girders-Introduction-Loading consideration-Selection of gantry girder-Position of moving load for maximum effects, profile of gantry girder, limitation on vertical deflection-Design of gantry girders.	
4	Design of Light Gauge Structures: Design of light gauge steel structures: Introduction–Types of cross sections–Materials-Local and post buckling of thin elements–Stiffened and multiple stiffened compression elements–Tension members– Beams and deflection of beams–Combined stresses and connections	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Explain the behaviour and properties of structural steel members to resist various structural forces and actions and apply the relevant codes of practice	K2, K4			
CO2	Analyse the behaviour of structural steel members and undertake design at both serviceability and ultimate limit states	K3, K4			
CO3	Apply a diverse knowledge of design of steel engineering practices applied to real life problems.	K2, K3			
CO4	Analyse and design cold formed steel members	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	-
CO2	2	3	2	-	-	-	-	-	-	-	-	-
CO3	2	3	2	-	-	-	-	-	-	-	-	-
CO4	2	3	3	-	-	-	-	-	-	-	-	-
CO5	2	3	3	-	-	-	-	-	-	-	-	-

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Steel structures: Design and Practice	N Subramanian	Oxford Publication					
2	Design of Steel structures	Duggal S.K.	Tata McGraw-Hill					
3	Design of Steel structures	A. S. Arya, J.L. Ajmani and Awadesh Kumar	Nem Chand and Bros					
4	Cold-Formed Steel Structures	Wie-Wen Yu	McGraw Hill Book Company					

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Steel design	William T Segui	Cenage Learning				
2	Design of Steel Structures- Vol I and Vol II	Ramachandra S. and Virendra Gehlot	Standard Book House				
3	IS 800-2007, Code of practice for structural steel design		BIS				

Sl. No.	Link ID
1	https://archive.nptel.ac.in/courses/114/106/114106047/
2	https://archive.nptel.ac.in/courses/105/105/105105162/

URBAN TRANSPORTATION PLANNING

Course Code	PECET866	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

1. The course aims to introduce to the students the concept of transportation planning and impart in-depth knowledge on the four stage planning process and to highlight the need for sustainable transportation

Module No.	Syllabus Description						
1	Need for transportation planning- Characteristics of urban travel, Transportation issues and challenges, Detrimental effects of traffic on environment. Urban Structure- types and properties -centripetal, grid, linear, directional, Movement and Accessibility – Hierarchy of transportation facilities. Demand analysis in transportation planning , Modelling based on consumer behavior of travel choices, Basic principles of travel demand analysis and assumptions.	9					
2	Transportationplanningprocess-Systemsapproach,Elements/stages of transportation planning process - Goal, objectivesand constraints, Trip-based and Activity-based approaches fortransportation planning.Data collection – Definition of study area,zoning- selection of cordon, Samplingtechniques and sample size,Sources of data and types of surveys for planning, Trip Generation-	9					

	Factors influencing grip generation, methods of forecasting trip	
	generation rates- expansion factor, linear regression, category analysis.	
	Trip Distribution- Growth factor methods, Synthetic methods- Gravity	
	models, opportunity model. Modal Split- Factors influencing modal split,	
3	Types of mode split models – trip end, trip interchange, logit model.	9
	Traffic assignment- Purpose, Elements of transportation networks- Nodes and	
	links,Methods for traffic assignment	
	Transportation and land use - Role of urban activity analysis in	
	transportationplanning, Transportation impacts on activity system, Land use	
	transportation interaction.	
4	Land use models- Selection of land use model, Lowry model-Structure,	
4	features, Model equation system. Sustainable transportation- features,	9
	facilities, Transit oriented development, Non transport solutions to transport	
	problems, Transportation demand management, Quickresponse techniques for	
	demand estimation. Comprehensive Mobility Plan- objectives and activities	
	involved, Application of GIS in transport planning	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the need for transportation planning, the issues and challenges related totransportation and its interaction with urban structure and land use	K3
CO2	Apply the concept of travel demand and analyse its role in transportation planning and to apply the concept in systems approach to transportation planning process.	K3, K4
СО3	Apply the concept of delineation of study area, sampling of data, and data collection techniques for the four stage planning process and to analyse the techniques for predicting trip generation.	K3, K4
CO4	Apply and analyse the methods for predicting trip distribution, mode split and traffic assignment	K3, K4
CO5	Apply the land use transport models and to analyse the sustainable approaches to transportation planning and preparation of comprehensive mobility plan with application of GIS	K3, K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		1	2	1		3	3	3				2
CO2		1	2	2		2		1				2
СОЗ	2	2	2	3	2	2		1				2
CO4	3	3	3	3	3	2		1				2
CO5	2	1	3	3	3	3	3	3		2	2	3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to Transportation Planning	Bruton,M.J	Hutchinson of London	2021			
2	Principles of Transportation Engineering	Chakraborthy,P and Das,A	PHI Learning	2 nd Ed			
3	Traffic Engineering and Transport Planning	Kadiyali, L.R	Khanna Publishers	8 th Ed			
4	Highway Engineering,	Rogers M	Blackwell Science				

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Principles of Urban Transport Planning	chinson, B G	Tata McGrawHill	1974			
2	Metropolitan Transportation Planning	Dickey, J. W	Tata McGrawHill	1975			
3	Urban Transportation Planning a Decision Oriented Approach	Mayer, M.D and Miller, E. J ,	Tata McGrawHill	2 nd Ed			
4	Transportation Engineering and Planning	Papacostas, C. S. and Prevedouros, P.D	Prentice Hall of India Pvt. Ltd.	2012, 3 rd Ed			

	Video Links (NPTEL, SWAYAM)				
SL.No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/105/105105208/				

RURAL WATER SUPPLY AND ONSITE SANITATION SYSTEMS

Course Code	PECET867	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET503	Course Type	Theory

Course Objectives:

- 1. Understand key concepts and the importance of rural water supply and on-site sanitation systems
- 2. Explore the design, implementation, and sustainability of water supply systems in rural areas
- 3. Study various on-site sanitation technologies and their applications in rural settings.
- **4.** Develop skills for planning, managing, and evaluating rural water and sanitation projects, considering socio-economic, cultural, and environmental factors.

Module No.	Syllabus Description			
1	Introduction to Rural Water Supply and Sanitation Overview of Global Water and Sanitation Challenges, Global water crisis: statistics and trends, Importance of water and sanitation in rural development, Sustainable Development Goals (SDGs) related to water and sanitation. Principles of Rural Water Supply, Basic water supply concepts: sources, availability, and quality, Water demand estimation in rural communities, Water supply systems: gravity-fed, pumped, and rainwater harvesting	9		

	Design and Implementation of Rural Water Supply Systems					
	Water Source Development, Identifying and protecting water sources: surface					
	water, groundwater, and rainwater, Water source contamination and					
	protection strategies. Water Treatment and Distribution, Water treatment					
2	methods: filtration, disinfection, and safe storage, Distribution systems:	11				
	pipelines, storage tanks, and standpipes, Operation and Maintenance strategies					
	for rural water supply systems, Monitoring and evaluation of water supply					
	services					
	Introduction to On-Site Sanitation					
3	Concepts of on-site sanitation: Importance of sanitation for public health and					
	environment. Design and construction of basic on-site sanitation systems: pit					
	latrines, septic tanks, and composting toilets. Advanced sanitation	0				
3	technologies: biogas digesters, eco-san toilets. Selecting appropriate sanitation	9				
	systems based on local conditions. Waste Management and Resource					
	Recovery: Faecal sludge management: collection, treatment, and disposal.					
	Resource recovery from sanitation: composting and biogas generation.					
	Planning and Managamant of Dural Water Supply and Sanitation					
	Projects					
	Planning water sumply and conjustion projects, needs for assessment and					
	Fraining water supply and samation projects, needs for assessment and					
	reasibility studies. Funding and financing options for rural water and					
4	sanitation projects. Stakenoider engagement and community participation.	9				
	National and international policies on water and sanitation. Regulatory					
	trameworks and standards for rural water and sanitation. Role of government,					
	NGOs, and private sector in rural water and sanitation. Sustainability and					
	Innovation in Water and Sanitation technology in rural areas.					

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand global water and sanitation challenges, importance and principles of rural water supply systems	K2
CO2	learn to identify, protect, and treat water sources, manage distribution systems, and oversee the operation and maintenance of rural water supply services.	К3
CO3	design on-site sanitation systems, select appropriate technologies, and manage waste and resource recovery processes.	К3
CO4	plan and assess rural water and sanitation projects, explore funding, engage stakeholders, and apply policies and innovations for sustainable implementation.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	-		2	2					
CO2	3	3	2			2	2				1	
CO3	3	2	3			2	3				1	
CO4	3	3	2			3	3				3	

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Rural water supply and sanitation	Sanjay Gupta	Vayu Education of India	First Edition 2012			
2	Rural water supply and sanitation	Sharma J K	Ardent Publications	First Edition 2012			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Wastewater Engineering, Treatment and Reuse	Metcaff and Eddy	Tata McGrawhill publications	4 th Edition 2017			
2	Sewage disposal and air pollution Engineering	S K Garg	Khanna publishers	43 rd edition			
3	Manual of water supply and t	treatment, 3rd edition, CPHEEO	, GOI, New delhi				

DESIGN OF EARTHQUAKE RESISTANT STRUCTURES

Course Code	PECET865	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCET303/ Equivalent	Course Type	Theory

Course Objectives:

1. Apply the basic seismic concepts and building code provisions to the seismic design of structures

Module No.	e Syllabus Description	
1	 Introduction – Classification of dynamic loads – essential characteristics of a dynamic problem – methods of discretization– single degree of freedom systems – basic components of a dynamic system. Formulation of equation of motion – Newton's 2nd law and D' Alembert's principle generalized SDOF systems. Solution of the equation of motion – undamped free vibration – damped free vibration- critically damped under damped and over damped SDOF systems, Logarithmic decrement. (Numerical examples expected, but not derivations) Response to harmonic loading – steady state and transient states steady sate amplitude, Dynamic magnification factor. (Numerical examples expected, but not derivations) 	9
2	Base excited SDOF system - formulation of equation of motion – Response of SDOF base excited systems;	9

	Response spectrum: Concept of pseudo acceleration, velocity. Response	
	spectra, Four-way logarithmic plot – DVA spectrum (concept only).	
	Multi degree of freedom systems 2 DOE systems Equation of motion	
	Normal modes of vibrations and natural frequencies MDOE systems choor	
	Normal modes of viorations and natural frequencies, MDOF systems: shear	
	building idealization and equation of motion - Natural frequencies and mode	
	shapes, orthogonality of normal modes.	
	Forced vibration analysis of MDOF Systems - Modal expansion of	
	response, Mode superposition method. (concept only)	
	Elements of Earthquake Engineering: Plate tectonics – faults Earthquake	<u></u>
	magnitude and intensity. Eague and Enjoentre. Energy release and saismic	
	inagintude and intensity, rocus and Epicentic, Energy release and seisinic	
	waves. Characteristics of Earthquake, Measurement of ground motion-	
	Seismographs, Seismic zone mapping.	
	Structural Systems for Seismic Resistance: Lateral load resisting systems in	
	RC and steel structures	
	ice and steel su detules.	
3	Building Irregularities: in elevation - plan - influence of structural	9
	classification- Concepts of seismic design- Centre of mass, centre of rigidity,	
	torsional eccentricity	
	Estimation of Seismic Demand on buildings:	
	Seismic coefficient method - Estimation of base shear and its distribution	
	along height based on Equivalent static method using IS 1893 for multi storied	
	buildings.	
	Response spectrum method(RSM): concept, (Numerical problems in RSM	
	not expected in exams)	
	Dustility considerations in earthquely resistant design of buildings:	
	Ductinity considerations in earthquake resistant design of bundings.	
4	Ductility of R.C structures- significance. Factors influencing ductility.	0
4	Ductile detailing provisions as per IS-13920 (2016)- for beams, columns,	9
	beam-column joints and shear walls.	
	Evaluation of Earthquake proneness of building by preliminary inspection -	
	Rapid Visual Screening Technique	
NB: Assessment of RSM through submission of course project alone, which		
--	--	
involves computer modelling of building, seismic analysis and design and		
submission of design drawings including ductile detailing provisions.		

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation (Evaluate and Analyse): 20 marks

Assignment

1. Identify any requirement for an earthquake resistant structure and complete its design.

Criteria for evaluation:

- 1. Defining objectives (K4 4 points).
- 2. field data collection (K4 4 points)
- 3. Analysis of data (K5 4 points)
- 4. Verification with standard specification or rating (K5 4 points)
- 5. Final design (K4- 2 points, K5 2 points)
 - a. Summarizes findings and insights. (K4)
 - b. Reflects critical thinking and informed decision-making. (K5)

Scoring:

1. Accomplished (4 points): Exceptional analysis, clear implementation, and depth of understanding.

- 2. Competent (3 points): Solid performance with minor areas for improvement.
- 3. Developing (2 points): Adequate effort but lacks depth or clarity.

4. Minimal (1 point): Incomplete or significantly flawed.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each module.	2 questions will be given from each module, out of which 1 question should be answered.	
• Total of 8 Questions, each carrying 3 marks	Each question can have a maximum of 3 sub divisions. Each question carries 9 marks. (4x9 = 36 marks)	60
(8x3 =24marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply structural dynamics principles for seismic analysis of structures.	K3
CO2	Understand the principles of various lateral load resisting systems for building structures and apply the same to seismic design of structures.	K3
CO3	Estimate the seismic demand over structures	К3
CO4	Apply the principles of ductile detailing.	К3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3										2

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Dynamics of Structures- Theory and applications to earthquake engineering	Anil K. Chopra	Prentice Hall	2020			
2	Earthquake resistant design of structures	Pankaj Agarwal and Manish Shrikhande	PHI New-Delhi	2017			
3	Structural Dynamics	Mario Paz	CBS publishers	2004			

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Dynamics of Structures	Clough R.W, J.Penzien	MC GrawHill International				
2	Seismic Design of RC and Masonry Buildings	T Paulay and M J N Priestley	Wiley Inter Seience, 1	1992			
3	IS 1893 (2016): Criteria for Earthquake Resistant Design of Structures - Part 1 : General Provisions and Buildings						
4	IS 13920 (2016) Ductile Design a Seismic Forces - Code of Practic	and Detailing of Reinforced	Concrete Structures Subje	cted to			

Video Links (NPTEL, SWAYAM)					
Sl. No.	Link ID				
1	https://archive.nptel.ac.in/courses/105/101/105101004/				

WASTE MANAGEMENT

Course Code	OECET831	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To learn broader understandings on various aspects of solid waste management practiced in industries.
- 2. To learn recovery of products from solid waste to compost and biogas, incineration and energy recovery, hazardous waste management and treatment, and integrated waste management.

Module No.	Syllabus Description					
1	INTRODUCTION TO SOLID WASTE MANAGEMENT: Classification of solid wastes (source and type based), solid waste management (SWM), elements of SWM, ESSWM (environmentally sound solid waste management) and EST (environmentally sound technologies), factors affecting SWM, Indian scenario, progress in MSW (municipal solid waste) management in India. Indian and global scenario of e-waste	9				
2	 WASTE GENERATION ASPECTS: Waste stream assessment (WSA), waste generation and composition, waste characteristics (physical and chemical), health and environmental effects (public health and environmental) COLLECTION, STORAGE, TRANSPORT AND DISPOSAL OF WASTES: Waste Collection, Storage and Transport: Collection components, storage-containers/collection vehicles, collection operation, transfer station, 	9				

	waste collection system design, record keeping, control, inventory and monitoring, implementing collection and transfer system.	
3	 WASTE DISPOSAL: key issues in waste disposal, disposal options and selection criteria, sanitary landfill, landfill gas emission, leachate formation, environmental effects of landfill, landfill operation issues, a case study. HAZARDOUS WASTE MANAGEMENT AND TREATMENT: Identification and classification of hazardous waste, hazardous waste treatment, pollution prevention and waste minimization, hazardous wastes management in India. 	9
4	WASTE PROCESSING TECHNIQUES & SOURCE REDUCTION, PRODUCT RECOVERY & RECYCLING: Purpose of processing, mechanical volume and size reduction, component separation, drying and dewatering. Source Reduction, Product Recovery and Recycling: basics, purpose, implementation monitoring and evaluation of source reduction, significance of recycling, planning of a recycling programme, recycling programme elements, commonly recycled materials and processes, E-waste recycling, a case study.	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the basics of solid waste management towards sustainable development	К2
CO2	Undestand technologies to process waste and dispose the same.	K2
CO3	Design working models to convert waste to energy	K3
CO4	Identify and classify hazardous waste and manage the hazard	K2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					3	3					2
CO2	3					3	3					2
CO3	3					3	3					2
CO4	3					3	3					2

Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Integrated Solid Waste Management, Engineering Principles and Management Issues	Tchobaanoglous, G., Theisen, H., and Samuel A Vigil,	McGraw-Hill Publishers	2014		
2	Waste Management	Bilitewski B., Hard He G., Marek K., Weissbach A., and Boeddicker H	Springer	1994		
3	Waste Management Practices: Municipal, Hazardous and Industrial,	John Pichtel	CRC Press	2014, 2nd Edition		
4	Solid Waste Engineering	Vesilind PA, Worrell W and Reinhart D	Brooks/Cole Thomson Learning Inc	2010, 2nd Edition		
5	Thermo-chemical Processing of Biomass: Conversion into Fuels, Chemicals and Power	Robert C. Brown	John Wiley and Sons, USA	2019		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Integrated solid waste management: a life cycle inventory	White, F. R., Franke P. R., & Hindle M.	McDougall,P. John Wiley & Sons.	2001			
2	Handbook of solid waste management and waste minimization technologies	Nicholas, P., & Cheremisinoff, P. D.	Imprint of Elsevier Science	2005			
3	Environmental Engineering	Peavy, H.S, Rowe, D.R., and G. Tchobanoglous	,McGraw Hill Education	2017, 1st Indian Edition			
4	Waste Management Practices,	John Pichtel	CRC Press, Taylor and Francis Group	2005.			
5	Hazardous Waste Management	LaGrega, M.D.Buckingham,P.L. and Evans, J.C.	McGraw Hill International Editions, New York	2010			
6	Solid Waste Management - Present and Future Challenges,	Jagbir Singh, Ramanathan, AL.	I.K. International publishing House Pvt.Ltd., India.	2019			
7	Manual on Municipal Solid Waste Management	CPHEEO	Ministry of Urban Development, India	2016			

Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID			
1	http://cpheeo.gov.in/cms/manual-on-municipal-solid-waste-management-2016.php			
2	https://nptel.ac.in/courses/105/103/105103205/			
3	https://nptel.ac.in/courses/120/108/120108005/			
4	https://nptel.ac.in/courses/105/106/105106056/			
5	https://nptel.ac.in/courses/105/105/105105160			
6	https://nptel.ac.in/courses/103/107/103107125/			
7	https://nptel.ac.in/courses/105103205			
8	https://www.youtube.com/watch?v=k0ktJRoRcOA			
9	https://nptel.ac.in/courses/103/107/103107125/			
10	https://onlinecourses.nptel.ac.in/noc22_ce76/preview			
11	https://onlinecourses.swayam2.ac.in/cec20_ge13/preview			

RAINWATER HARVESTING

Course Code	OECET832	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To familiarize the students with the important aspects of Rain water harvesting system.
- **2.** To impart the knowledge about the various hydrologic phenomena and their relevance in the field of water conservation.

Module No.	Syllabus Description	Contact Hours
1	Introduction: Hydrologic cycle, Advantages of Rainwater, Factors affecting run off from catchment, Important points relating to water storage and recharging, Rainwater harvesting, Components of rain water harvesting, Catchment area, harvesting structures, soil moisture conservation, check dams, artificial recharge, farm ponds, percolation tanks.	9
2	Water harvesting: Principles, importance and issues, Water harvesting techniques – classification based on source, storage and use. Rain water harvesting methods, storing rain water for direct use, Recharging ground water aquifers from roof top runoff, Recharging ground water aquifers with runoff from ground areas, Modular Rain Water Harvesting System- Coarse mesh/leaf screen Gutter - Down spout/Conduit - First flushing device Filter- Sand Filter- Charcoal Water Filter	9
3	Recharging subsurface Aquifers: Methods of recharging subsurface aquifers- through recharge pit - recharge through abandoned hand pump - recharge through abandoned dug well/ open well - through recharge trench - recharge through shafts - recharge trench with bore	9

4	Artificial Recharge - Concept of artificial recharge of groundwater, recharge methods – basin - stream - channel, ditch and furrow, flooding and recharge well methods, recharge mounds and induced recharge	0
	Concepts of Watershed - need for watershed development in India, Planning	9
	of watershed management – Drainage - ,watershed management for rainwater	
	harvesting,	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A	Part B	Total
•	2 Questions from each module. Total of 8 Questions, each carrying 3 marks	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
	(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Understand the different components of Rain water harvesting system	K1				
CO2	Describe the concept of Artificial Recharge and methods for groundwater storage	К3				
CO3	To study the watershed development and management with reference to Rain water harvesting system	К3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					1	1			1		
CO2	3					1	2			1		
CO3	3	1	2		1	2	1		1	1		1

Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Groundwater Hydrology	Larry W. Mays, David Keith Todd	John Wiley & Sons,	2004						
2	Groundwater and Wells	Edward E. Johnson S.I	Johnson Screens	2007						

Reference Books									
Sl. No	Title of the BookName of the Author/s		Name of the Publisher	Edition and Year					
1	Traditional Rainwater Harvesting Structures	Joji V.S., Reshma Susan Jacob	Springer Nature Switzerland,	2023					
2	Designing Rainwater Harvesting Systems Integrating Rainwater Into Building Systems	Celeste Allen Novak, Eddie Van Giesen, Kathy M. DeBusk	Wiley	2014					
2	Rainwater Harvesting Technic	ues to augment Groundwa	ater: Ministry of Water R	esources					

PUBLIC TRANSPORTATION SYSTEMS

Course Code	OECET833	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

- 1. To comprehend the Fundamental Concepts of Public Transit Systems
- 2. To Develop and Evaluate Transit Service and Operational Plans
- 3. To Plan and Analyze Transit Lines and Networks
- 4. To analyze performance and economic aspects of Transit Systems

Module No.	Syllabus Description	Contact Hours
1	Basic Operating Elements of Public Transit, public transport travel characteristics, Transit travel characteristics: factors, spatial distribution, temporal variations, Passenger volume analysis and service capacity determination, Introduction to transit service planning, Operational planning process, Service and evaluation standards, Data requirements and collection, Frequency and Headway distributions, Scheduling of service and timetabling.	9
2	Transit Line Capacity: Elements and Computation, Systems approach to transit line capacity, Capacities of different modes, Level Service measures, Speed of Transit Service, Passenger demand: factors and elasticity. Stops and stopping regimes: Definitions and relationships, Practical and optimal values	9

	of stop spacing, Comparison of all-stop, skip-stop, zonal and express/local operations	
3	Transit Lines and Networks: Planning objectives, principles and considerations, Geometry of transit lines, Types of transit lines and their characteristics, Transfers in transit networks, Analysis of metro network geometric forms, Transit System Statistics, Route choice and assignment	9
4	Introduction to Network design and service design, Performance and Economic Measures: Revenues, costs and operating ratio, Transit Fares: Fare structure and Collection, Costing and cost allocation methods, Modern Approaches in Transit planning: Information System for Passengers, Application of ITS.	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Comprehend the Fundamental Concepts of Public Transit Systems	K2
CO2	Develop and Evaluate Transit Service and Operational Plans	К3
CO3	Plan and Analyze Transit Lines and Networks	К3
CO4	Measure and analyze performance and economic aspects of Transit Systems	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1				3						3
CO2	1	1				3						3
CO3	1					3						3
CO4	1					3						3

	Text Books									
Sl. No	Title of the Book	Name of the Publisher	Edition and Year							
1	Public Transit Planning and Operation: Theory, Modelling and Practise,	Ceder, Avishai	Elsevier, Oxford, UK	2007						
2	Public Transport: Its Planning, Management and Operation	White, Peter	Taylor & Francis, London.	2008						
3	Urban Transit: Operations, Planning and Economics	Vuchic, Vukan R.	Wiley, New Jersy.	2005						

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Transportation Engineering- An Introduction	Khisty, C J.	Prentice-Hall, New Jersy	2002		
2	Transit Capacity and Quality of Service Manual	Transit Cooperative Research Program	Transportation Research Board, Washington,D.C	2013		

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://onlinecourses.nptel.ac.in/noc22_ce70				

FUNDAMENTALS OF BUILDING PLANNING

Course Code	OECET834	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/	Course Type	Theory

Course Objectives:

1. To enable students to develop creative and sustainable building design

Module No.	Syllabus Description						
1	 Definition of architecture –Historical development of architecture. Principles of architectural composition – Unity/ harmony – character– balance – proportion – scale –rhythm — Accentuation and contrast. Organising principles in architecture – Symmetry – hierarchy – axis – linear – concentric, radial – and asymmetric grouping – primary and secondary masses. Form and Space in architecture – Positive and negative space – Defining space with horizontal and vertical elements -qualities of architectural space Architecture Design Process: The 7 phases : The pre-design phase: The schematic design phase: The design development phase: The construction documents phase: The building permit phase: The bidding and negotiation phase: The construction administration phase. 						
2	Acoustics, fundamentals: Intensity of sound- Watts/m2- Bel- Decibel scales- dBA-Phon. Addition of sound levels. Acoustical Defects- Echoes, Reverberation, Foci and Dead Spots, Loudness, Noise						

	Sound absorption-materials and fixings.	
	Natural lighting: Visual task requirements, Units of Light, Light, Vision and Buildings, Standards of Lighting and Visual comfort-The sky as a source of light, Daylight factor, Recommended daylight factors for interiors.	
	Thermal comfort: Factors affecting thermal comfort- effective Temperature	
	Thermal comfort indices-ET-CET Charts- Bioclimatic chart- Psychrometry and Psycrometric chart.	
3	Earth-Sun relationship: Sun's apparent movement with respect to the earth. Solar angles	
	Thermal design of buildings: Thermo physical properties of building materials and thermal control	
	Functional protection: Causes of fire, Mechanism of fire spread in buildings, classification of fire-High temperature effects and combustibility of building materials and structure	
4	Architecture Design aspect: basic anthropometrics- human functions and their implications for space requirements- movement and circulation diagrams-special interpretations- various activities and their relationship with spaces	
	Energy efficiency in buildings – Energy assessment in buildings – Green building rating guidelines	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5 15		10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Use principles of architectural composition and organization for development of building form and planning of functional spaces in buildings.	К3
CO2	Show good understanding of the comprehensive architectural design process, from the pre-design stage to construction management.	К3
CO3	Adopt principles of acoustics and lighting for efficient functional design of buildings.	К3
CO4	Show good understanding of fire protection methods for efficient and safe function of buildings.	К3
CO5	Apply climate conscious architectural principles for creating energy efficient buildings.	K3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1										2
CO2	2	1										2
CO3	2	1					2					2
CO4	2	1										2
CO5	3	2					2					2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	A global history of architecture	Francis D. K. Ching , Mark M. Jarzombek , Vikramaditya Prakash	Wiley	3 rd edition 2017			
2	Architecture: Form, Space, and Order	Francis D. K. Ching	Wiley	5 th edition 2023			
3	Architecture And Town Planning	Satish Chandra Agarwala	Dhanpath Rai &Co	2018			
4	Architectural Engineering Design: Mechanical Systems	Robert Butler Brown	Mc Graw Hill	1 st edition			
5	Building Services Engineering	David Chadderton	T&F India	6 th Edition 2017			
6	Architectural Acoustics	Marshall Long	Academic Press	2014			
7	Lighting	Pritchard, D.C	Longman Scientific & Technical, Harlow	1995			
8	Daylight in Architecture	Benjamin Evans	McGraw - Hill Book Company	1981			
9	Building Environment	AjithaSimha.D	Tata McGraw Hill Publishing Co	1985			

10	Design and Installation of Services in Building complexes &High Rise Buildings	Jain. V.K.,	Khanna Tech. Publishers	1986
11	A text book of Vastuvidya	A. Achyuthan, Balagopal. T.S. Prabhu	Vastuvidyaparatishthanam	1996
12	Manual of tropical Housing and Building Part I – Climatic design	Koenigseberger	Orient Longman	2011

Reference Books						
Sl. No	Title of the Book	Title of the BookName of the Author/sName of the Publisher		Edition and Year		
1	Architecture: From Prehistory to Climate Emergency	Barnabas Calder	Pelican	2021		
2	Building construction illustrated	Francis D. K. Ching	Wiley	6 th edition 2017		
3	Architectural Engineering Design: Mechanical Systems	Robert Butler Brown	Mc Graw Hill	1 st edition		
4	Acoustical Design in Architecture	Knudsen V.O. and Harris C.M	John Wiley	1980		
5	Energy Efficient Buildings: Architecture, Engineering, and EnvironmentWayne Forster and Dean HawkesW.W. Norton Company Inc					
6	Bureau of Indian standards, Han 1987	dbook on Functional Require	ement of Buildings – SP:	41(S and T)-		
7	National Building Code of India	(latest revisions to be refer	ed)			
8	Bureau of Energy Efficiency, India. Design Guidelines for Energy Efficient Multi-Storey Buildings,2014.					

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://archive.nptel.ac.in/courses/124/107/124107005/ https://nptel.ac.in/courses/124107012			
2	https://archive.nptel.ac.in/courses/105/102/105102175/			
3	https://archive.nptel.ac.in/courses/105/107/105107156/			
4	https://nptel.ac.in/courses/101104065 https://archive.nptel.ac.in/noc/courses/noc22/SEM1/noc22-ar03/			

HYDROGEOLOGY

Course Code	OECET835	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PECET416	Course Type	Theory

Course Objectives:

- 1. Understand Groundwater Origin and Occurrence: Gain foundational knowledge necessary for advanced hydrogeological studies.
- **2.** Identify Geologic Structures Favourable to Groundwater Movement: Learn to describe and assess structures that influence groundwater availability and flow.
- **3.** Apply Groundwater Exploration Principles: Develop practical skills for locating water resources and evaluating groundwater quality.
- **4.** Analyse Groundwater Conditions Across Different Terrains: Formulate strategies for managing and protecting groundwater resources.
- **5.** Overview of Groundwater Impacts on Civil Engineering Structures: Understand how groundwater affects civil engineering projects and structures.

Module No.	Syllabus Description			
	Groundwater- origin and occurrence. Hydrological cycle. Geologic structures			
1	groundwater. Water table. Groundwater reservoirs – aquifer, aquiclude,	9		
	aquifuge and aquitard. Types of aquifers- unconfined, confined, leaky and			
	bounded aquifers - artesian aquifers; springs and their types. Hydrological			

	characteristics of aquifers and aquifer properties: Porosity, Permeability, Void	
	Ratio, Specific Yield and Specific Retention – Aquifer parameters– Hydraulic	
	conductivity, Transmissivity and Storativity. Hydraulic Conductivity	
	determination - Lab tests - Permeameter methods and Field tests - Auger	
	Hole test, Tracer test and Pump test	
	Groundwater exploration- Remote sensing and GIS applications. Geophysical	
	methods of groundwater exploration: Principles of electrical resistivity	
	method- Wenner and Schlumberger methods. Subsurface investigations- test	
2	drilling, resistivity logging, SP logging, radiation logging- brief description.	9
-	Groundwater movement - Water table and Piezometric level (surface) -	,
	Theory of groundwater flow – Darcy's law and its experimental verification –	
	differential equation governing groundwater flow. Groundwater level	
	fluctuations	
	well design criteria. Water wells- types of wells. Methods for drilling deep	
	wells. Quality of groundwater-domestic, irrigation and industrial &	
	construction purpose. Chemical characteristics of groundwater – Graphical	
3	representation of water quality data: Interpretation of hydrochemical analysis	9
	data: Hill-Piper Trilinear diagram, Durov's diagram and U. S. Salinity	
	diagram - Sodium Adsorption Ratio (SAR). WHO, BIS and ISI water quality	
	standards. Biological health of groundwater	
	Saline water intrusion in coastal and other aquifers and its prevention	
	Ghyben-Herzberg relationship methods and need for artificial recharge to	
	aquifers Groundwater management Groundwater development safe yield	
	and antimal mining policy. Polation between geometrical and a terrain and	0
4	and optimal mining poncy. Relation between geomorphology of a terrain and	У
	its hydrogeological condition. Problems created by groundwater in the	
	construction phase of mega civil engineering projects. Groundwater provinces	
	of India. Groundwater conditions in Kerala	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. 	60
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	A comprehensive understanding of the origin, occurrence and storage of groundwater	K2			
CO2	Identify and describe geologic structures that favour groundwater occurrence and movement, including the vertical distribution of groundwater and water table dynamics	K2			
CO3	Apply the principles of geospatial and geophysical methods for ground water exploration	К3			
CO4	Evaluate the quality of groundwater for human consumption, irrigation and industrial & construction purpose.	K3			
CO5	Evaluate the groundwater conditions across various terrains and assess the level of groundwater contamination for formulating approaches for groundwater conservation	K3			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3	2										2
CO3	3	2	2									1
CO4	3					2	2					1
CO5	3	2				2	3					1

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Groundwater Hydrology	Bouwer,	McGraw-Hill	1978.				
2	Hydrogeology	Davis, S.N. and Dewiest, R.J.N.	John Wiley and Sons Inc. New York,	1966.				
3	Hydrogeology, Principle and Practice	Kevin M. Hiscock, Victor F. Bense	Wiley	2021				
4	Groundwater geophysics,	Krisch R	Springer - Verlag	2008				
5	Groundwater	Reghunath,	Wiley Eastern Limited.	3 rd Edn. 2007				

	Reference Texts							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Hydrogeology: Groundwater Science and Engineering	Alain Dassargues	CRC Press	2018				
2	Introduction to Hydrogeology Unesco-IHE Delft Lecture Note Series	J.C. Nonner, Johannes Nonner	CRC Press	2010				